Correlation of the Modulation Period and the Phase Formation in Multilayer Eutectic Al/Cu Foils

S. Polishchuk$^{1}$, A. Ustinov$^{2}$, Ya. Matvienko$^{1}$, S. Demchenkov$^{2}$, M. Skoryk$^{1}$, I. Zahorulko$^{1}$, O. Molebny$^{1}$, and A. Kotko$^{3}$

$^{1}$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина
$^{2}$Институт электросварки им. Е. О. Патона НАН Украины, ул. Казимира Малевича, 11, 03150 Киев, Украина
$^{3}$Институт проблем материаловедения им. И. Н. Францевича НАН Украины, ул. Омельяна Прицака, 3, 03142 Киев, Украина

Получена: 06.08.2024; окончательный вариант - 01.09.2024. Скачать: PDF

Multilayer Al/Cu foils have a high potential to be used as filler materials for diffusion welding or friction stir welding of difficult-to-weld materials. In this work, we study EB-PVD-deposited multilayer Al/Cu foils with the modulation periods (sum thickness of one Al layer and one Cu layer) of 50 nm and 1000 nm. The total composition for both the foils is of about Al–30 wt.% Cu and the total thickness is varied from 20 μm to 30 μm. The phase formations within the foils during heating up to 500°C are investigated by x-ray diffractometry, scanning and transmission electron microscopies, differential scanning calorimetry, and electrical-resistance measurement. The correlation between the modulation period and the formation of the Al2Cu, AlCu3, and Al4Cu9 phases is studied. The sequence, temperatures, and kinetics of phase transformations, as well as the heat of the reactions, are found to correlate significantly with the modulation period. Mechanisms of the phase formations within the foils and their mechanical properties are discussed.

Ключевые слова: nanoscale Al/Cu multilayers, intermetallic compounds, texture, calorimetry, hardness.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i10/1007.html

PACS: 61.50.Ks, 61.72.Ff, 68.55.jm, 68.60.Bs, 68.65.Ac, 81.15.Jj, 81.70.Pg


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. B. E. Paton, A. Ya. Ishchenko, and A.I. Ustinov, The Paton Welding Journal, No. 12: 2 (2008).
  2. A. Ustinov, L. Olikhovska, T. Melnichenko, and A. Shyshkin, Surf. Coat. Techn., 202: 3832 (2008).
  3. A. I. Ustinov, Ya. I. Matvienko, S. S. Polishchuk, and A. E. Shishkin, The Paton Welding Journal, No. 10 (678): 29 (2009).
  4. D. Turnbull, Metal. Trans., A12: 695 (1981).
  5. U. Gosele and K. N. Tu, J. Appl. Phys., 53: 3252 (1982).
  6. A. E. Gershinskii, B. I. Fomin, E. I. Cherepov, and F. L. Edelman, Thin Solid Films, 42: 269 (1977).
  7. S. U. Campisano, E. Cosranzo, F. Scaccianoce, and R. Cristofolini, Thin Solid Films, 52: 97 (1978).
  8. H. G. Jiang, J. Y. Dai, H. Y. Tong, B. Z. Ding, Q. H. Song, and Z. Q. Hu, J. Appl. Phys., 74: 6165 (1993).
  9. F. Haidara, M.-C. Record, B. Duployer, and D. Mangelinck, Surface & Coatings Technology, 206: 3851 (2012).
  10. H. T. G. Hentzell, R. D. Thompson, and K. N. Tu, J. Appl.Phys., 54: 6923 (1983).
  11. H. T. G. Hentzell and K. N. Tu, J. Appl. Phys., 54: 6929 (1983).
  12. J. M. Vanderberg and R. A. Hamm, Thin Solid Films, 97: 313 (1982).
  13. R. A. Hamm and J. M. Vandenberg, J. Appl.Phys., 56: 293 (1984).
  14. J. Jellison and E. P. Klier, Trans. AIME, 233: 1694 (1965).
  15. T. Duguet, S. Kenzari, V. Demange, T. Belmonte, J. M. Dubois, and V. Fournee, J. Mater. Res., 25: 764 (2010).
  16. C. Dong, A. Perrot, J.-M. Dubois, and E. Belin, Mater. Sci. Forum, 150–151: 403 (1994).
  17. C. Dong, L. M. Zhang, Q.-G. Zhou, H.-C. Zhang, J.-M. Dubois, Q.-H. Zhang, Y.-C. Fu, F.-Z. He, and F. Ge, Bull. Mater. Sci., 22: 465 (1999).
  18. R. Besson, M. Avettand-Fenoel, L. Thuinet, J. Kwon, A. Addad, P. Roussel, and A. Lergis, Acta Mater., 87: 216 (2015).
  19. R. Hielscher and H. Schaeben, J. Appl. Cryst., 41: 1024 (2008).
  20. S. R. Ignatovich, I. M. Zakiev, D. I. Borisov, Strength Mater., 38: 428 (2006).
  21. M. H. Ata, Journal of Engineering Sciences Assut University Faculty of Engineering, 45: 45 (2017).
  22. N. Ponweiser, C. L. Lengauer, and K. W. Richter, Intermetallics, 19, Iss. 11: 1737 (2011).
  23. M. Draissia and M.-Y. Debili, Central European Journal of Physics, 3, No. 3: 395 (2005).
  24. J. M. Zhang, and K. W. Xu, Chinese Physics, 13, No. 7: 1082 (2004).
  25. K.-K. Wang, Thin Solid Films, 717: 138436 (2021).
  26. T. Duguet, E. Gaudry, T. Deniozou, J. Ledieu, M. C. de Weerd, T. Belmonte, J. M. Dubois, and V. Fournee, Phys. Rev. B, 80: 205412 (2009).
  27. G. Liu, M. Gong, D. Xie, and J. Wang, Journal of the Minerals, Metals & Materials Society, 71: 1200 (2019).
  28. E. A. Lord and S. Ranganathan, J. Non-Cryst. Sol., 334–335: 121 (2004).
  29. M. Şaşmaz, A. Bayri, and Y. Aydoğdu, J. Supercond. Nov. Magn., 24: 757 (2011).
  30. G. Nolze, Zeitschrift für Metallkunde, 95: 744 (2004).
  31. Ya. I. Matvienko, S. S. Polishchuk, A. D. Rud, T. M. Mika, A. I. Ustinov, and S. A. Demchenkov, Metallofiz. Noveishie Tekhnol., 42, No. 2: 143 (2020).
  32. R. Besson, J. Kwon, L. Thuinet, M.-N. Avettand-Fenoel, and A. Legris, Phys. Rev. B, 90: 214104 (2014).
  33. V. S. Mikhalenkov, E. A. Tsapko, S. S. Polishchuk, and A. I. Ustinov, Journal of Alloys and Compounds, 386, Iss. 1–2: 192 (2005).
  34. L. A. Clevenger, C. V. Thompson, and R. C. Cammarata, Appl. Phys. Let., 52: 795 (1988).
  35. H. E. Kissinger, Analytical Chemistry, 29, Iss. 11: 1702 (1957).
  36. S. Vyazovkin, Phys. Chem. Chem. Phys., 28: 18643 (2016).
  37. X. Z. Wei, Q. Zhou, K. W. Xu, P. Huang, F. Wang, and T. J. Lu, Mater. Sci. Eng. A, 726: 274 (2018).
  38. M. Braunovic, L. Rodrigue, and D. Gagnon, Proc. of the 54th IEEE Holm Conference on Electrical Contacts (2008), p. 270.