Regarding Improving the Quality of Forgings Made of Austenitic Stainless Steel

L. M. Deyneko$^{1}$, H. D. Sukhomlyn$^{1}$, T. O. Derhach$^{2}$, A. Yu. Borysenko$^{3}$, A. Ye. Balyev$^{4}$

$^{1}$Украинский государственный университет науки и технологий, просп. Науки, 4, 49600 Днепр, Украина
$^{2}$Харьковский национальный автомобильно-дорожный университет, ул. Ярослава Мудрого, 25, 61002 Харьков, Украина
$^{3}$Институт черной металлургии имени З.И. Некрасова, НАН Украины, пл. Академика Стародубова, 1, 49050 Днепр, Украина
$^{4}$ПрАТ «СЕНТРАВИС ПРОДАКШН ЮКРЕЙН», просп. Трубников, 56, 53201 Никополь, Украина

Получена: 06.10.2024; окончательный вариант - 14.11.2024. Скачать: PDF

The goal of the work is to establish the reasons for the unsatisfactory results of ultrasonic control (USC) of forgings made of austenitic stainless steel 08Х18Н10Т (321) of responsible purpose and to provide the scientifically based recommendations for improving their quality. Comprehensive studies are conducted, which included analysis of chemical composition, study of macro- and microstructure of forgings by metallographic and electron-microscopy methods, testing for resistance to intergranular corrosion (IGC), determination of mechanical properties. As established, the forgings rejected by USС, in contrast to the suitable ones, are characterized by: the presence of areas of liquation and structural heterogeneity of the steel, increased content of δ-ferrite, anomalous different-grain microstructure with a grain size from No. 8 (15 μm) to No. 2 (700 μm), the presence of chromium carbides on the grain boundaries, local susceptibility to IGC. In the structure of the forging turned out to be suitable during ultrasonic testing, there is an increased content (> 65%) of special low-energy grain boundaries Σ3 in the theory of coincident-site lattices (GB Σ3 CSL) that indicates the complete completion of recrystallization of the deformed steel during the final heat treatment. Recommendations are developed and provided to the metallurgical enterprise on improving both the manufacturing technology and the structural and qualitative characteristics of forgings made of austenitic corrosion-resistant steels of industrial production.

Ключевые слова: stainless austenitic steel, forging, forged pieces, chemical composition, macrostructure, microstructure, special grain boundaries CSL, ultrasonic control, intergranular corrosion, mechanical properties.

URL: https://mfint.imp.kiev.ua/ru/abstract/v46/i12/1237.html

PACS: 61.72.Ff, 61.72.Mm, 81.20.Hy, 81.40.Ef, 81.40.Lm, 81.70.Cv, 83.50.Uv


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. S. Lu, Chemical Industry Press. (2013).
  2. K. H. Lo, C. H. Shek, and J. K. L. Lai, Mater. Sci. Eng., 65: 39 (2009).
  3. V. Kain and P. K. De, Int. J. Nucl. Energy Sci. Technol., 1, Nos. 2/3: 220 (2005).
  4. V. S. Vakhrusheva, T. A. Dergach, and G. D. Sukhomlin, Vopr. Atom. Nauki Tekh., 92, No. 2: 73 (2008) (in Russian).
  5. T. O. Dergach, Avtoref. Diss. Dokt. Tekhn. Nauk (Dnipro: PDABA: 2018) (in Ukrainian).
  6. G. Mochnal, Forging of Stainless Steels, 14a: 261 (2005).
  7. V. A. Tyurin, Teoriya i Protsessy Kovki Slitkov na Presakh (Moskva: Mashinostroenie: 1979) (in Russian).
  8. R. Wehrenberg, Materials Engineering, 98: 1 (1983).
  9. A. I. Panchenko, A. V. Korol, A. V. Zhaivoronok, L. V. Tur, S. A. Panchenko, and A. E. Balev, Stal’, 9: 49 (2012) (in Russian).
  10. T. A. Dergach, G. D. Sukhomlin, and L. M. Deyneko, Met. Sci. Heat Treat., 4: 75 (2003) (in Russian).
  11. S. A. Panchenko, A. E. Balev, V. I. Bolshakov, and T. A. Dergach, Met. Sci. Heat Treat., 63, No. 4: 43 (2013) (in Russian).
  12. X. Tang, C. M. Han, Z. K. Bao, Y. Y. Huang, W. He, and W. Hua, Microsc. Microanal., 11 (2005).
  13. A. Yu. Borisenko, Met. Sci. Heat Treat., 2: 39 (2014) (in Russian).
  14. M. Shimada, H. Kokawa, Z. J. Wang, Y. S. Sato, and I. Karibe, Acta Mater., 50, No. 9: 2331 (2002).
  15. T. O. Dergach, G. D. Sukhomlin, L. M. Deyneko, Z.-H. Jiang, and J. Tian, Mater. Sci., 59, No. 1: 56 (2023).
  16. Ya. Katada, N. Vashitsu, and H. Baba, Met. Sci. Heat Treat., 605, No. 11 (2005).
  17. C. Cayron, Acta Crystallogr., 63: 11 (2007).
  18. T. O. Dergach, G. D. Sukhomlin, A. Ye. Balyev, and D. A. Sukhomlin, Visnyk Pridniprovsk. Derzh. Akademiyi Budivnytstva ta Arkhitekt., 3: 46 (2020) (in Ukrainian).
  19. L. E. Murr, Acta Metall., 16: 1127 (1968).