Interaction between Electron and Phonon Subsystems in Hafnium Diboride

S. M. Sichkar

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 18.11.2013. Download: PDF

Ab initio calculation of the electron—phonon coupling functions is carried out, using full potential LMTO method. Low value of the averaged electron— phonon interaction constant for HfB$_{2}$ $\lambda = 0.17$ indicates that there is no evidence of superconductivity in this compound. Electrical resistivity and anisotropy factor $\rho_{z}/ \rho_{x} = 1.079$ ($T = 300$ K) are theoretically calculated. A good agreement with experimental data of electrical resistivity is achieved. Comparative analysis of ABINIT, SIESTA, VASP, and present LMTO method for phonon spectra calculating is performed.

Key words: lattice dynamics, electron—phonon interaction, phonon spectrum, thermodynamic properties, electrical resistivity, diborides.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i03/0419.html

DOI: https://doi.org/10.15407/mfint.36.03.0419

PACS: 63.20.dk, 71.15.-m, 71.15.Mb, 71.38.-k, 72.10.Di, 72.15.Eb

Citation: S. M. Sichkar, Interaction between Electron and Phonon Subsystems in Hafnium Diboride, Metallofiz. Noveishie Tekhnol., 36, No. 3: 419—429 (2014)


REFERENCES
  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature, 410: 63 (2001). Crossref
  2. C. Buzea and T. Yamashita, Supercond. Sci. Technol., 14: R115 (2001). Crossref
  3. V. A. Gasparov, N. S. Sidorov, I. I. Zverkova, and M. P. Kulakov, JETP Lett., 73: 532 (2001). Crossref
  4. E. Wuchina, M. Opeka, S. Causey, K. Buesking, J. Spain, A. Cull, J. Routbort, and F. Guitierrez-Mora, J. Mater. Sci., 39: 5939 (2004). Crossref
  5. W. Zagozdzon-Wosik, I. Rusakova, C. Darne, Z. H. Zhang, P. V. D. Heide, and P. Majhi, J. Microsc., 223: 227 (2006). Crossref
  6. L. Zhang, D. A. Pejakovic, J. Marschalland, and M. Gasch, J. Am. Ceram. Soc., 94: 2562 (2011). Crossref
  7. M. Mallik, A. J. Kailath, K. K. Ray, and R. Mitra, J. Eur. Ceram. Soc., 32: 2545 (2012). Crossref
  8. S. N. Dub, A. A. Goncharov, S. S. Ponomarev, V. B. Filippov, G. N. Tolmacheva, and A. V. Agulov, J. Superhard Mater., 33: 151 (2011). Crossref
  9. D. Wiley, W. R. Manning, and O. Hunter, J. Less-Common Met., 18: 149 (1969). Crossref
  10. J. W. Lawson, C. W. Bauschlicher, and M. S. Daw, J. Am. Ceram. Soc., 94: 3494 (2011). Crossref
  11. X. Zhang, X. Luo, J. Han, J. Li, and W. Han, Comput. Mat. Sci., 44: 411 (2008). Crossref
  12. E. Deligoz, K. Colakoglu, and Y. O. Ciftci, Comput. Mat. Sci., 47: 875 (2010). Crossref
  13. X. Zhang, X. Luo, J. Li, P. Hu, and J. Han, Scr. Mater., 62: 625 (2010). Crossref
  14. Y. Yang, S. Jayaraman, B. Sperling, D. Y. Kim, G. S. Girolami, and J. R. Abelson, J. Vac. Sci. Technol., 25: 200 (2007). Crossref
  15. P. B. Allen, Phys. Rev. B, 6: 2577 (1972). Crossref
  16. S. Y. Savrasov and D. Y. Savrasov, Phys. Rev. B, 54: 16470 (1996). Crossref
  17. J. Perdew and Y. Wang, Phys. Rev. B, 45: 13244 (1992). Crossref
  18. P. E. Blochl, O. Jepsen, and O. K. Andersen, Phys. Rev. B, 49: 16223 (1994). Crossref
  19. M. Stuemke and G. Petzow, Z. Metallkd., 66: 292 (1975).
  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  21. P. Ordejon, E. Artacho, and J. M. Soler, Phys. Rev. B, 53: R0441 (1996). Crossref
  22. O. F. Sankey and D. J. Niklewski, Phys. Rev. B, 40: 3979 (1989). Crossref
  23. N. Troullier and J. L. Martins, Phys. Rev. B, 43: 1993 (1991). Crossref
  24. W. L. McMillan, Phys. Rev. B, 167: 331 (1968). Crossref
  25. Y. S. Tyan, L. E. Toth, and Y. A. Chang, J. Phys. Chem. Solids, 30: 785 (1969). Crossref
  26. P. B. Allen and R. C. Dynes, Phys. Rev. B, 12: 905 (1975). Crossref