Impact of Surface Inhomogeneities on Conditions for Charge Transfer in Ultrathin Films of Metals

R. I. Bihun, Z. V. Stasyuk

Ivan Franko National University of Lviv, 50 Dragomanova Str., 79005 Lviv, Ukraine

Received: 07.04.2014. Download: PDF

The quantum electronic-transport model of ultrathin-metal-film conductivity is developed within the scope of the Boltzmann theory. The fluctuations of metal-film boundary drastically change electron energy spectrum in thin metal film. These changes determine the conditions of electron scattering in the mode of quantum charge transfer. Size dependence of metal-film conductivity is calculated within the framework of the developed model. Within the scope of our theoretical approach, we can estimate the average amplitude of surface fluctuations in continuous metal films, which has a good agreement with STM surface investigation. The minimum thickness for manifestation of metallic conductivity in CoSi$_{2}$ films is calculated within the framework of the percolation model.

Key words: thin metal films, surface and grain boundary scattering.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i06/0723.html

DOI: https://doi.org/10.15407/mfint.36.06.0723

PACS: 72.10.Fk, 72.15.Eb, 73.25.+i, 73.50.Bk, 73.61.At, 85.40.Xx

Citation: R. I. Bihun and Z. V. Stasyuk, Impact of Surface Inhomogeneities on Conditions for Charge Transfer in Ultrathin Films of Metals, Metallofiz. Noveishie Tekhnol., 36, No. 6: 723—734 (2014) (in Ukrainian)


REFERENCES
  1. R. Munoz, C. Arenas, G. Kremer, and L. Moraga, J. Phys.: Condens. Matter, 15, No. 3: L177 (2003). Crossref
  2. Y. Amirat, G. Chechkin, and R. Gadyl'shin, Applicable Analysis, 86, No. 7: 873 (2007). Crossref
  3. G. A. Chechkin, A. Friedman, and A. L. Piatnitski, J. Math. Anal. Appl., 231: 213 (1999). Crossref
  4. D. I. Borisov and R. R. Gadyl'shin, Theor. Math. Phys., 118, No. 3: 272 (1999). Crossref
  5. R. T. Tung, J. M. Poate, and F. C. Unterwald, Phys. Rev. Lett., 54, No. 16: 1840 (1985). Crossref
  6. M. D. Buchkovs'ka, R. I. Bihun, Z. V. Stasyuk, and D. S. Leonov, Metallofiz. Noveishie Tekhnol., 35, No. 12: 1659 (2013) (in Ukrainian).
  7. Z. Tesanovic, M. Jaric, and S. Maekawa, Phys. Rev. Lett., 57, No. 21: 2760 (1986). Crossref
  8. Z. Tesanovic, Solid State Phys., 20, No. 6: L829 (1987); N. Trivedi and N. W. Ashcroft, Phys. Rev. B, 4, No. 17: 12298 (1988). Crossref
  9. G. Fishman and D. Calecki, Phys. Rev. Lett., 62, No. 11: 1302 (1989); idem, Phys. Rev. B, 43, No. 14: 11581 (1991). Crossref
  10. L. Sheng, D. Y. Xing, and Z. D. Wang, Phys. Rev. B, 51, No. 11: 7325 (1995). Crossref
  11. R. Munoz, G. Vida, G. Kremer, L. Moraga, and C. Arenas, J. Phys.: Condens. Matter, 11: 299 (1999); R. Munoz, A. Concha, F. Mora, and R. Espejo, Phys. Rev. B, 61, No. 7: 4514 (2000). Crossref
  12. G. Fisher and H. Hoffman, Z. Phys. B: Condens. Matter, 39, No. 4: 287 (1980). Crossref
  13. Yu. F. Ogrin, V. N. Lutskij, M. U. Arifova, and V. I. Kovalev, Zhurn. Eks. Teor. Fiz., 53, No. 4: 1218 (1967) (in Russian).
  14. V. B. Sandomirskij, Zhurn. Eks. Teor. Fiz., 52, No. 1: 158 (1967) (in Russian).
  15. M. Jalochowski and E. Bauer, Phys. Rev. B, 38, No. 8: 5272 (1988); M. Jalochowski and E. Bauer, Phys. Rev. B, 37: 8622 (1988). Crossref
  16. A. Meyerovich and S. Stepaniants, J. Phys. Condens. Matter, 14: 4287 (2002). Crossref
  17. R. I. Bigun, Yu. A. Kunitsky, and Z. V. Stasyuk, Nanosistemi, Nanomateriali, Nanotehnologii, 8, No. 1: 129 (2010).
  18. Z. Stasyuk, M. Kozak, B. Penyukh, and R. Bihun, J. Phys. Studies, 7, No. 2: 207 (2003).
  19. R. I. Bigun and Z. V. Stasyuk, Metallofiz. Noveishie Tekhnol., 30, No. 6: 795 (2008) (in Ukrainian).
  20. M. Walther, D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, Phys. Rev. B, 76: 125408-1–9 (2007). Crossref
  21. K. H. Han, Z. S. Lim, and Sung-Ik Lee, Physica B, 167: 185 (1990). Crossref
  22. R. I. Bigun, M. D. Buchkovs'ka, N. S. Koltun, Z. V. Stasyuk, and D. S. Leonov, Metallofiz. Noveishie Tekhnol., 35, No. 1: 85 (2013) (in Ukrainian).