Hydrogen-Induced Effects in Annealed and Prestrained 316L-Type Stainless Steel Studied by Mechanical Spectroscopy

V. M. Shyvaniuk

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 27.01.2014. Download: PDF

Annealed and tensile prestrained 316L-type stainless steel is studied by internal friction (IF) method. Low-frequency forced-vibration measurements of IF are carried out in the temperature range of 130—500 K before and after gaseous-hydrogen charging at 543 K and under three different pressures: 0.5, 10, and 100 MPa. Two complex multicomponent IF peaks at about 250 and 365 K are detected after preliminary tensile deformation in hydrogen-free material. As revealed, the low-temperature peak is of relaxation type, and the high-temperature one is a resonant peak. The effect of hydrogen content and hydrogen distribution on IF peaks’ features, e.g., background, amplitude and thermal stability, is examined. An increase in stability of vacancies caused by hydrogen is suggested that follows from IF measurements after ageing at 473 K. As experimentally shown, the temperature drop of hydrogenation to 358 K leads to a marked shift of the high-temperature peak toward higher temperatures. A hypothesis about the cause underlying this phenomenon is proposed.

Key words: austenitic steel, hydrogen, crystal lattice defects, internal friction.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i06/0841.html

DOI: https://doi.org/10.15407/mfint.36.06.0841

PACS: 61.72.Hh, 61.72.J-, 62.40.+i, 66.30.-h, 81.30.Hd, 81.40.Np

Citation: V. M. Shyvaniuk, Hydrogen-Induced Effects in Annealed and Prestrained 316L-Type Stainless Steel Studied by Mechanical Spectroscopy, Metallofiz. Noveishie Tekhnol., 36, No. 6: 841—856 (2014)

  1. D. H. Herring, Wire Forming Technol. Int., 13: 24 (2010).
  2. E. A. Steigerwald, F. W. Schaller, and A. R. Troiano, Trans. Metall. Soc. AIME, 218: 832 (1960).
  3. A. Szumer and A. Janko, Corrosion, 35: 461 (1979). Crossref
  4. H. K. Birnbaum and P. Sofronis, Mater. Sci. Eng. A, 176: 191 (1994). Crossref
  5. N. R. Quick and H. H. Johnson, Metall. Trans. A, 10: 67 (1979). Crossref
  6. A. M. Brass, A. Chanfreau, and J. Chene, Hydrogen Effects on Material Behaviour (Eds. A. W. Thompson and N. R. Moody) (Warrendale: TMS Publishing: 1990), p. 19.
  7. J. P. Hirth, Metall. Trans. A, 11: 861 (1980). Crossref
  8. Y. Murakami, T. Kanezaki, Y. Mine, and S. Matsuoka, Metall. Mater. Trans. A, 39: 1327 (2008). Crossref
  9. V. N. Shivanyuk, J. Foct, and V. G. Gavriljuk, Mater. Sci. Eng. A, 300: 284 (2001). Crossref
  10. Y. Murakami, T. Kanezaki, and Y. Mine, Metall. Mater. Trans. A, 41: 2548 (2010). Crossref
  11. http://www.nihon-tp.com/index.htm
  12. W. Pfeiler, Alloy Physics (Weinheim: Wiley-WCH: 2007). Crossref
  13. A. M. Bobyr', V. N. Bugaev, and A. A. Smirnov, Reports of Academy of Sciences of USSR, 320: 1113 (1991).
  14. Y. Fukai and N. Okuma, Japan J. Appl. Phys., 32: L1256 (1993). Crossref
  15. V. G. Gavriljuk, V. N. Bugaev, Yu. N. Petrov, A. V. Tarasenko, and Z. Yanchitski, Scripta Mater., 34: 903 (1996). Crossref
  16. Y. J. Fukai, Alloys Compd., 356–357: 263 (2003). Crossref
  17. K. Takai, H. Shoda, H. Suzuki, and M. Nagumo, Acta Mater., 56: 5158 (2008). Crossref
  18. M. Nagumo, Mater. Sci. Technol., 20: 940 (2004). Crossref
  19. M. Ivanchenko, Y. Yagodzinskyy, and H. Hanninen, Mater. Sci. Eng. A, 521–522: 121 (2009). Crossref
  20. M. S. Blanter and Yu. V. Piguzov, Internal Friction Method in Metal Science Studies (Moscow: Metallurgiya: 1991).
  21. J. de Fouquet, P. Boch, J. Petit, and G. J. Rieu, Phys. Chem. Solids, 31: 1901 (1970). Crossref
  22. M. A. Krishtal and S. A. Golovin, Internal Friction and Materials Structure (Moscow: Metallurgiya: 1976).
  23. V. G. Gavriljuk, V. N. Shyvaniuk, and J. Foct, Acta Mater., 51: 1293 (2003). Crossref
  24. G. Lu and E. Kaxiras, Phys. Rev. Let., 94: 155501 (2005). Crossref
  25. Y. Tateyama and T. Ohno, Phys. Rev. B, 67: 174105 (2003). Crossref
  26. K. Sakaki, T. Kawase, M. Hirato, M. Mizuno, H. Araki, Y. Shirai, and M. Nagumo, Scr. Mater., 55: 1031 (2006). Crossref
  27. Y. Q. Chen, Y. C. Wu, Z. Wang, and S. J. Wang, Radiat. Phys. Chem., 76: 308 (2007). Crossref
  28. Y. C. Wu, Y. Itoh, and Y. Ito, physica status solidi (b), 193: 307 (1996). Crossref