Structure and Magnetic Properties of Fe$_{2}$MnGa

Yu. V. Kudryavtsev$^{1}$, A. O. Perekos$^{1}$, V. M. Iermolenko$^{1}$, J. Dubowik$^{2}$, I. M. Glavatskyi$^{3}$, L. E. Kozlova$^{4}$, Yu. B. Skirta$^{4}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine
$^{2}$Institute of Molecular Physics PAN, ul. Mariana Smoluchowskiego 17, 60-179 Poznań, Poland
$^{3}$Helmholtz Centre Berlin for Materials and Energy, 1 Hahn Meitner Platz, 14109 Berlin, Germany
$^{4}$Institute of Magnetism under NAS and MES of Ukraine, 36b Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 23.04.2014; final version - 30.06.2014. Download: PDF

Magnetic properties of Fe$_{50.1}$Mn$_{22.7}$Ga$_{27.2}$ alloy in connection with its atomic structure are investigated in temperature range of 4—850 K by using neutron diffraction (ND) and magnetometry. As revealed, the annealed (at 1020 K during 96 hours) and quenched (in ice water) alloy contains ordered phases of superstructural L1$_{2}$ and L2$_{1}$ types. The Fe$_{50.1}$Mn$_{22.7}$Ga$_{27.2}$ alloy exhibits complicated temperature dependence of magnetic properties determined by the ferromagnetic (FM)-to-paramagnetic transformation (under heating) in L2$_{1}$ phase and transformation from the antiferromagnetic (AFM) state to the FM one in L1$_{2}$ phase. As revealed with ND data, the AFM order in L1$_{2}$ phase is not strongly antiparallel. Absence of significant exchange anisotropy in the alloy can be explained by the random orientation of magnetic moments of the FM-phase grains, which are adjacent to the AFM-phase regions.

Key words: metamagnetic transformation, martensitic transformation, magnetic properties, exchange anisotropy, neutron diffraction.



PACS:, 64.60.Cn, 64.75.Op, 72.15.Eb, 75.25.-j, 75.30.Kz, 75.50.Bb

Citation: Yu. V. Kudryavtsev, A. O. Perekos, V. M. Iermolenko, J. Dubowik, I. M. Glavatskyi, L. E. Kozlova, and Yu. B. Skirta, Structure and Magnetic Properties of Fe$_{2}$MnGa, Metallofiz. Noveishie Tekhnol., 36, No. 7: 967—976 (2014) (in Ukrainian)

  1. X. D. Tang, W. H. Wang, W. Zhu, E. K. Liu, G. H. Wu, F. B. Meng, H. Y. Liu, and H. Z. Luo, Appl. Phys. Lett., 97: 242513 (2010). Crossref
  2. X. D. Tang, W. H. Wang, G. H. Wu, F. B. Meng, H. Y. Liu, and H. Z. Luo, Appl. Phys. Lett., 99: 222506 (2011). Crossref
  3. T. Gasi, A. K. Nayak, M. Niklas, and C. Felser, J. Appl. Phys., 113: 17E301 (2013). Crossref
  4. C. W. Shih, X. G. Zhao, H. W. Chang, W. C. Chang, and Z. D. Zhang, J. Alloys Compd., 570: 14 (2013). Crossref
  5. W. Zhu, E. K. Liu, L. Feng, X. D. Tang, J. L. Chen, G. H. Wu, H. Y. Liu, F. B. Meng, and H. Z. Luo, Appl. Phys. Lett., 95: 222512 (2009). Crossref
  6. T. Omori, K. Watanabe, R. Y. Umetsu, R. Kinuma, and K. Ishida, Appl. Phys. Lett., 95: 082508 (2009). Crossref
  7. T. Omori, K. Watanabe, X. Xu, R.Y. Umetsu, R. Kainuma, and K. Ishida, Scr. Mater., 64: 669 (2011). Crossref
  8. C. A. Jenkins, A. Scholl, R. Kainuma, H. J. Elmers, and T. Omori, Appl. Phys. Lett., 100: 032401 (2012). Crossref
  9. V. V. Khovaylo, T. Omori, K. Endo, X. Xu, R. Kainuma, A. P. Kazakov, V. N. Prudnikov, E. A. Gan'shina, A. I. Novikov, Yu. O. Mikhailovsky, D. E. Mettus, and A. B. Granovsky, Phys. Rev. B, 87: 174410 (2013). Crossref
  10. Y. V. Kudryavtsev, N. V. Uvarov, V. N. Iermolenko, I. N. Glavatskyy, and J. Dubowik, Acta Mater., 60: 4780 (2012). Crossref