Low-Temperature Interdiffusion and Ordered Phase Formation in Au/Cu Nanocrystalline Thin Films at the Different Atmospheres

A. A. Tynkova$^{1}$, S. I. Sidorenko$^{1}$, I. E. Kotenko$^{1}$, V. L. Svetchnikov$^{2}$, S. M. Voloshko$^{1}$

$^{1}$National Technical University of Ukraine ‘KPI’, 37 Peremohy Ave., 03056 Kyiv, Ukraine
$^{2}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 17.07.2014. Download: PDF

Interdiffusion processes in the polycrystalline Au (30 nm)/Cu (40 nm) thin films during annealing at 100—200C for 15 and 30 min in a vacuum with different residual-atmosphere pressures of 10$^{-2}$ and 10$^{-6}$ Pa and in an environment of hydrogen at a pressure of 5$\cdot$10$^{2}$ Pa are investigated. Secondary neutral mass spectrometry complemented with transmission electron microscopy, X-ray diffraction, and atomic force microscopy is used. The intermixing of two layers is observed at the temperatures, at which the bulk diffusion can be safely ruled out. Within the Au layer, the detected Cu profiles and their time evolution are typical $C$-kinetic regime grain boundary profiles. Due to the much higher grain boundary diffusivity, the saturation of Au grain boundaries at the Au-rich side is hit in a very short time. The high Cu concentration level in the Au-side could be interpreted by supposing existing boundaries, which are moving and leaving behind themselves the areas with high Cu concentration close to the stoichiometric compositions. Phase formation takes place in and around grain boundaries due to diffusing component transport along moving grain boundaries.

Key words: grain boundary diffusion, ordered phase, AuCu, thin film, Secondary Neutral Mass Spectrometry.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i12/1609.html

DOI: https://doi.org/10.15407/mfint.36.12.1609

PACS: 61.05.cp, 66.30.Pa, 68.35.Fx, 68.37.Lp, 68.37.Ps, 81.10.Jt, 82.80.Ms

Citation: A. A. Tynkova, S. I. Sidorenko, I. E. Kotenko, V. L. Svetchnikov, and S. M. Voloshko, Low-Temperature Interdiffusion and Ordered Phase Formation in Au/Cu Nanocrystalline Thin Films at the Different Atmospheres, Metallofiz. Noveishie Tekhnol., 36, No. 12: 1609—1620 (2014)

  1. U. Bardi, Rep. Prog. Phys., 57: 939 (1994). Crossref
  2. J. H. Sinfelt, Bimetallic Catalysts: Discoveries, Concepts and Applications (New York: Wiley: 1983).
  3. M. Ohring, The Materials Science of Thin Films (New York: Academic Press: 1992).
  4. F. Cacho, G. Cailletaud, C. Rivero, P. Gergaud, O. Thomas, and H. Jaouen, Mater. Sci. Eng. B, 135: 95 (2006). Crossref
  5. K. N. Tu, Phys. Rev. B, 49: 2030 (1994). Crossref
  6. G. T. Galyon and L. Palmer, IEEE Trans. Electron. Packag. Manuf., 28: 17 (2005). Crossref
  7. L. G. Harrison, Trans. Faraday Soc., 57: 1191 (1961). Crossref
  8. W. E. Martinez, G. Gregori, and T. Mates, Thin Solid Films, 518: 2585 (2010). Crossref
  9. G. Schmitz, D. Baither, M. Kasparzak, T. H. Kim, and B. Krause, Scr. Mater., 63: 484 (2010). Crossref
  10. V. M. Koshevich, A. N. Gladkikh, M. V. Karpovskyi, and V. N. Klimenko, Interface Sci., 2: 261 (1994). Crossref
  11. U. Gösele and K. N. Tu, J. Appl. Phys., 53: 3252 (1982). Crossref
  12. F. M. d'Heurle, J. Mater. Res., 3: 167 (1988). Crossref
  13. T. Laurila and J. Molarius, Crit. Rev. Solid State Mater. Sci., 28: 185 (2003). Crossref
  14. G. Molnár, G. Erdélyi, G. A. Langer, D. L. Beke, A. Csik, M. Kis-Varga, and A. Dudás, Vacuum, 98: 70 (2013). Crossref
  15. F. Hartung, J. C. Ewert, J. Dzick, and G. Schmitz, Scr. Mater., 39, No. 1: 79 (1998). Crossref
  16. G. Feinstein and J. B. Bindell, Thin Solid Films, 62: 37 (1979). Crossref
  17. H. Oechsner, Appl. Surf. Sci., 70: 250 (1993). Crossref
  18. L. Péter, G. L. Katona, Z. Berényi, K. Vad, G. A. Langer, E. Tyth-Kádar, J. Pádár, L. Pogány, and I. Bakonyi, Electrochim. Acta, 53: 837 (2007).
  19. A. N. Aleshin, V. K. Egorov, B. S. Bokstein, and P. V. Kurkin, Thin Sol. Films, 51: 223 (1993).
  20. L. A. Girifalco, Atomic Migration in Crystals (Tokyo, Japan: Kyōritsu Shuppan: 1980).
  21. K. Maier, phys. status solidi (a), 44: 567 (1977). Crossref
  22. A. Makovec, G. Erdélyi, and D. L. Beke, Thin Sol. Films, 520: 2362 (2012). Crossref
  23. B. D. Cullity, Elements of X-Ray Diffraction (Reading, MA: Addison-Wesley: 1979).
  24. S. Inomata and M. O. M. Kajihara, J. Mater. Sci., 46: 2410 (2011). Crossref
  25. O. Penrose, Acta Mater., 52: 3901 (2004). Crossref
  26. C. Y. Ma, E. Rabkin, W. Gust, and S. E. Hsu, Acta Metall. Mater., 43: 3113 (1995). Crossref
  27. F. Hartung and G. Schmitz, Phys. Rev. B, 64: 245418 (2001). Crossref
  28. J. Chakraborty, U. Welzer, and E. J. Mittemeijer, J. Appl. Phys., 103: 113512 (2008). Crossref
  29. J. Chakraborty, U. Welzer, and E. J. Mittemeijer, Thin Solid Films, 518: 2010 (2010). Crossref
  30. Ya. Ye. Geguzin, Yu. S. Kaganovskiy, and L. N. Paritskaya, Phys. Met. Metall., 54: 120 (1982).
  31. Yu. Kaganovskii and L. N. Paritskaya, Encyclopaedia of Nanoscience and Nanotechnology (Ed. H. S. Nalwa) (American Scientific Publishers: 2004), p. 1.