Effect of Inhomogeneous Magnetic Field on the Physical Properties of Metal—Polymer Composites

V. N. Bilyk$^{1}$, G. V. Kirik$^{2}$, O. G. Medvedovskaya$^{1}$, A. D. Stadnik$^{1}$, G. K. Chepurnykh$^{3}$, S. V. Sokolov$^{4}$

$^{1}$Sumy State А.S. Makarenko Pedagogical University, 87 Romenska Str., 40002 Sumy, Ukraine
$^{2}$LLC 'International Institute of Compressor and Power Engineering', 6 Kursk Ave., 40002 Sumy, Ukraine
$^{3}$Institute of Applied Physics, NAS of Ukraine, 58 Petropavlivska Str., 40000 Sumy, Ukraine
$^{4}$Sumy State University, 2 Rymskogo-Korsakova Str., 40000 Sumy, Ukraine

Received: 10.06.2013; final version - 28.11.2014. Download: PDF

The effective thermal conductivity and the coefficient of linear thermal expansion of crystals fabricated from polymer powders are studied, depending on the content of fine iron. A considerable improvement of the thermal characteristics in the batch of samples fabricated by mixing of the polymer matrix and iron with the following heating and holding at a temperature by 20 K above the melting point of the polymer and further implementation of a crystal structure (by temperature lowering) in the rotating inhomogeneous magnetic field is identified. In this case, an anomalous change of the coefficients of linear thermal expansion of composite depending on the weight of iron added there with amount of less than 5% of the original mass of the pure polymer is detected.

Key words: thermal conductivity, linear thermal expansion, composites, magnetic field.

URL: http://mfint.imp.kiev.ua/en/abstract/v36/i12/1641.html

DOI: https://doi.org/10.15407/mfint.36.12.1641

PACS: 44.10.+i, 65.40.De, 65.60.+a, 66.70.Hk, 77.84.Lf, 81.05.Qk, 83.60.Np

Citation: V. N. Bilyk, G. V. Kirik, O. G. Medvedovskaya, A. D. Stadnik, G. K. Chepurnykh, and S. V. Sokolov, Effect of Inhomogeneous Magnetic Field on the Physical Properties of Metal—Polymer Composites, Metallofiz. Noveishie Tekhnol., 36, No. 12: 1641—1650 (2014) (in Russian)


REFERENCES
  1. N. A. Inogamov and Yu. V. Petrov, ZhETF, 137, Iss. 3: 505 (2010) (in Russian).
  2. A. V. Inyushkin and A. N. Taldenkov, ZhETF, 138, Iss. 5: 862 (2010) (in Russian).
  3. S. I. Denisov, T. V. Lyutyy, and P. Hünggi, Phys. Rev. Lett., 97: 227202 (2006). Crossref
  4. S. I. Denisov, K. Sakmann, P. Talkner, and P. Hünggi, Phys. Rev. B, 75: 184432 (2007). Crossref
  5. L. P. Bulat, I. A. Drabkin, V. V. Karataev, V. B. Osvenskiy, and D. A. Pshenay-Severin, Fizika Tverdogo Tela, 52, No. 9: 1712 (2010) (in Russian).
  6. M. N. Levin and B. A. Zon, ZhETF, 111, Iss. 4: 1373 (1997) (in Russian).
  7. Yu. A. Osip'jan, Yu. I. Golovin, D. V. Lopatin, R. B. Morgunov, R. K. Nikolaev, and S. Z. Shmurak, Pis'ma v ZhETF, 69, Iss. 2: 110 (1999) (in Russian).
  8. N. N. Peschanskaya, I. U. Hristova, and P. N. Yakushev, Polymer, 42, No. 9: 1711 (2002).
  9. Yu. I. Golovin and R. B. Morgunov, Fizika Tverdogo Tela, 43, No. 5: 827 (2001) (in Russian).
  10. N. N. Peschanskaya, A. S. Smolyanskiy, and A. V. Rylov, Fizika Tverdogo Tela, 44, No. 9: 1711 (2002) (in Russian).
  11. N. N. Peschanskaya and P. N. Yakushev, Fizika Tverdogo Tela, 45, No. 6: 1130 (2003) (in Russian).
  12. L. D. Landau and E. M. Lifshitz, Elektrodinamika Sploshnykh Sred (Moscow: Nauka: 1982) (in Russian).
  13. I. E. Tamm, Osnovy Teorii Elektrichestva: Ucheb. Posobie dlya Vuzov (Moscow: FIZMATLIT: 2003) (in Russian).
  14. J. Ziman, Elektrony i Fonony (Electrons and Phonons) (Moscow: Izd. Inostr. Lit.: 1962) (Russian translation).
  15. A. Misnar, Teploprovodnost' Tverdykh Tel, Zhidkostey, Gazov i Ikh Kompozitsiy (Thermal Conductivity of Solids, Liquids, Gases, and Their Mixtures) (Moscow: Mir: 1968) (Russian translation).
  16. L. D. Landau and E. M. Lifshitz, Statisticheskaya Fizika. Pt. 1 (Moscow: Nauka: 1976) (in Russian).