Influence of Substitution of Nickel by Cobalt on Thermal Stability and Microhardness of Al$_{86}$Ni$_{8}$Gd$_{6}$ and Al$_{86}$Ni$_{8}$Y$_{6}$ Alloys with Amorphous and Nanocomposite Structure

V. K. Nosenko$^{1}$, O. O. Segida$^{1}$, A. A. Nazarenko$^{1}$, T. N. Moiseeva$^{2}$, S. A. Kostyrya$^{2}$, E. A. Svirdova$^{2,3}$, V. I. Tkach$^{2}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 72 R. Luxembourg Str., 83114 Donetsk, Ukraine
$^{3}$Luhansk Taras Shevchenko National University, 1 Gogolya Sqr., 92703 Starobilsk, Luhansk Oblast, Ukraine

Received: 22.07.2014. Download: PDF

The effect of partial and full substitution of Ni by Co in the amorphous Al$_{86}$Ni$_{8-x}$Co$_{x}$Y$_{6}$ and Al$_{86}$Ni$_{8-x}$Co$_{x}$Gd$_{6}$ ($x = 0, 2, 4, 6, 8$) alloys on structure, thermal stability, mechanism of first stage of crystallization and on microhardness in both amorphous state and nanocomposite one is studied by X-ray diffractometry, differential scanning calorimetry, and microhardness measurement methods. As determined, the increase in the Co content leads to increasing of the onset crystallization temperatures and microhardness of amorphous phases from 477 to 573 K and from 2.97 to 3.11 GPa in Al$_{86}$Ni$_{8-x}$Co$_{x}$Y$_{6}$ alloys, from 496 to 577 K and from 3.23 to 3.4 GPa in Al$_{86}$Ni$_{8-x}$Co$_{x}$Gd$_{6}$ alloys, respectively, and to changing of first stage of crystallization mechanism from one-phase mechanism to two-phase one. As shown, the formation of amorphous—nanocrystalline structures at the first stage of crystallization results in an essential increase of microhardness up to 5.98 $\pm$ 0.07 GPa in Al$_{86}$Ni$_{8-x}$Co$_{x}$Y$_{6}$ alloys and up to 5.0 $\pm$ 0.03 GPa in Al$_{86}$Ni$_{8-x}$Co$_{x}$Gd$_{6}$ alloys. As suggested, the observed changes in thermal stability and microhardness of the amorphous alloys may be caused by the differences in the electronic structure of the alloying rare-earth elements.

Key words: crystallization mechanism, microhardness, thermal stability, alloying, nanocrystals, amorphous Al-based alloys.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i01/0049.html

DOI: https://doi.org/10.15407/mfint.37.01.0049

PACS: 61.43.Dq, 61.46.Hk, 62.20.Qp, 62.23.Pq, 68.60.Dv, 81.40.Ef, 81.70.Pg

Citation: V. K. Nosenko, O. O. Segida, A. A. Nazarenko, T. N. Moiseeva, S. A. Kostyrya, E. A. Svirdova, and V. I. Tkach, Influence of Substitution of Nickel by Cobalt on Thermal Stability and Microhardness of Al$_{86}$Ni$_{8}$Gd$_{6}$ and Al$_{86}$Ni$_{8}$Y$_{6}$ Alloys with Amorphous and Nanocomposite Structure, Metallofiz. Noveishie Tekhnol., 37, No. 1: 49—65 (2015) (in Russian)


REFERENCES
  1. A. Inoue, K. Ohtera, A. P. Tsai, and T. Masumoto, Jpn. J. Appl. Phys., 27: L280 (1998). Crossref
  2. G. J. Shiflet, Y. He, and S. J. Poon, J. Appl. Phys., 64, No. 12: 6863 (1988). Crossref
  3. Y.-H. Kim, A. Inoue, and T. Masumoto, Mater. Trans. JIM., 31, No. 8: 747 (1990). Crossref
  4. H. Chen, Y. He, G. J. Shiflet, and S. J. Poon, Scr. Met. Mater., 25, No. 6: 1421 (1991). Crossref
  5. J. Mu, H. Fu, Zh. Zhu, A. Wang, H. Li, Zh. Hu, and H. Zhang, Adv. Eng. Mater., 11, No. 7: 530 (2009). Crossref
  6. B. J. Yang, J. H. Yao, J. Zhang, H. W. Yang, J. O. Wang, and E. Ma, Scr. Mater., 61: 423 (2009). Crossref
  7. O. N. Senkov, S. V. Senkova, J. M. Scott, and D. B. Miracle, Mater. Sci. Eng. A, 393: 12 (2005). Crossref
  8. K. B. Surreddi, S. Scudino, H. V. Nguyen, K. Nikolowski, M. Stoica, M. Sakaliyska, J. S. Kim, T. Gemming, J. Vierke, M. Wollgarten, and J. Eckert, J. Phys.: Conf. Ser., 144: 012079 (2009). Crossref
  9. Y. X. Zhuang, J. Z. Jiang, Z. G. Lin, M. Mezouar, W. Crichton, and A. Inoue, Appl. Phys. Lett., 79, No. 6: 743 (2001). Crossref
  10. V. I. Tkatch, S. G. Rassolov, V. V. Popov, V. V. Maksimov, V. V. Maslov, V. K. Nosenko, A. S. Aronin, G. E. Abrosimova, and O. G. Rybchenko, J. Non-Cryst. Solids, 357: 1628 (2011). Crossref
  11. Z. H. Huang, J. F. Li, Q. L. Rao, and Y. H. Zhou, Intermetallics, 16: 727 (2008). Crossref
  12. Zh. Huang, J. Li, Q. Rao, and Y. Zhou, J. Non-Cryst. Sol., 354: 1671 (2008). Crossref
  13. V. V. Maslov, V. K. Nosenko, V. O. Mashira, V. I. Tkach, S. G. Rassolov, V. V. Popov, and V. I. Krysov, Metallofiz. Noveishie Tekhnol., 27, No. 7: 935 (2005) (in Russian).
  14. V. K. Nosenko, E. A. Segida, A. A. Nazarenko, V. V. Maksimov, E. A. Sviridova, and S. A. Kostyrya, Nanosistemi, Nanomateriali, Nanotehnologii, 11, No. 1: 57 (2013) (in Russian).
  15. V. V. Maslov, V. I. Tkach, V. K. Nosenko, S. G. Rassolov, V. V. Popov, V. V. Maksimov, and O. O. Segida, Metallofiz. Noveishie Tekhnol., 33, No. 5: 663 (2011) (in Russian).
  16. A. Inoue, Progr. Mater. Sci., 43: 365 (1998). Crossref
  17. S. J. Poon, G. J. Shiflet, F. Q. Guo, and V. Ponnambalam, J. Non-Cryst. Sol., 317: 1 (2003). Crossref
  18. B. J. Yang, J. H. Yao, J. Zhang, H. W. Yang, J. O. Wang, and E. Ma, Scr. Mater., 61: 423 (2009). Crossref
  19. S. S. Gorelik, U. A. Skakov, and L. N. Rastorguev, Rentgenograficheskiy i Elektronno-Opticheskiy Analiz [X-Ray and Electron-Optical Analysis] (Moscow: MISiS: 2002) (in Russian).
  20. D. V. Louzguine-Luzgin and A. Inoue, J. Alloys Compd., 399: 78 (2005). Crossref
  21. O. N. Senkov and D. B. Miracle, Mater. Res. Bull., 36: 2183 (2001). Crossref
  22. R. Sabet-Sharghi, Z. Altounian, and W. B. Muir, J. Appl. Phys., 75, No. 9: 4438 (1994). Crossref
  23. B. Sun, X. Bian, J. Guo, J. Zhang, and T. Mao, Mater. Lett., 61: 111 (2007). Crossref
  24. A. Takeuchi and A. Inoue, Mater. Trans. JIM, 41, No. 11: 1372 (2000). Crossref
  25. W. Zalewski, J. Antonowicz, R. Bacewicz, and J. Latuch, J. Alloys Compd., 468: 40 (2009). Crossref
  26. S. Uporov, Y. Zubavichus, A. Yaroslavtsev, N. Trofimova, V. Bykov, R. Ryltsev, S. Pryanichnikov, V. Sidorov, K. Shunyaev, S. Mudry, S. Zhovneruk, and A. Murzakaev, J. Non-Cryst. Solids, 402: 1 (2014). Crossref
  27. A. Lovas, L. F. Kiss, and F. Sommer, J. Non-Cryst. Solids, 192–193: 608 (1995). Crossref
  28. V. I. Tkatch, S. G. Rassolov, V. K. Nosenko, V. V. Maksimov, T. N. Moiseeva, and K. A. Svyrydova, J. Non-Cryst. Solids, 358: 2727 (2012). Crossref
  29. F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Ratzke, H. R. Shrober, S. K. Sharma, and H. Teichler, Rev. Mod. Phys., 75: 237 (2003). Crossref
  30. Z. C. Zhong, X. Y. Jiang, and A. L. Greer, Mater. Sci. Eng. A, 226–228: 531 (1997). Crossref
  31. K. L. Sahoo, M. Wollgarten, J. Haug, and J. Banhart, Acta Mater., 53: 3861 (2005). Crossref