Influence of Interaction of Non-Nearest Neighbours on the Phase Stability of One-Dimensional Ising Magnets

V. N. Udodov, E. V. Shabunina, D. V. Spirin

Khakas State University named after N.F. Katanova, 90 Lenina Ave., 655017 Abakan, Republic of Khakassia, Russia

Received: 04.06.2014; final version - 26.01.2015. Download: PDF

The results of Monte Carlo computer simulation of phase diagrams of one-dimensional (quasi-one-dimensional) Ising magnet at finite temperatures are presented. The influence of many-particle (four-particle) interactions and neighbours up to the third coordination sphere on the phase transitions and magnetic phases in a small nanometre-size magnet is investigated. The relationship of phase diagrams with diagrams of the ground states is analysed. As shown, the antiferromagnetic order becomes more stable with increasing temperature, if exchange integral in the third coordination sphere is positive. The role of four-particle interaction in the stabilization of magnetic phases is ascertained. The common features of phase diagrams are determined independently on the size of a magnet. As shown, the complex ferrimagnetic structure of the Ising magnet is stabilized at a negative interaction of non-nearest neighbours and (or) with accounting of many-particle interaction. The proposed approach allows modelling of metastable phases, calculating both the dynamic and static critical exponents of transitions and the hysteresis phenomena for quasi-one-dimensional magnets. Original marking of one-dimensional magnetic phases based on hexadecimal notations is used. For the first time, for finite temperatures, all possible phases of one-dimensional Ising magnet with a period of up to 13 sites in the presence of a complex many-particle interspin interaction are considered. This makes it possible to predict the types of isothermal magnetic phase transitions when the external magnetic field and other interaction parameters are changed. The proposed approach is applicable to magnetic clusters and quasi-one-dimensional Ising magnets based on such metals as Co, Fe, etc.

Key words: phase diagram, phase transition, metastable phase, many-particle interaction, one-dimensional Ising model, nanomagnet.



PACS: 02.70.Uu, 05.10.Ln, 05.50.+q,, 64.60.De, 64.60.My, 75.10.Hk

Citation: V. N. Udodov, E. V. Shabunina, and D. V. Spirin, Influence of Interaction of Non-Nearest Neighbours on the Phase Stability of One-Dimensional Ising Magnets, Metallofiz. Noveishie Tekhnol., 37, No. 3: 281—293 (2015) (in Russian)

  1. W. Li and P. Tong, Phys. Rev. E, 83, Iss. 3: 031128 (2011). Crossref
  2. A. Vindigni and M. G. Pini, J. Phys.: Condens. Matter, 21, No. 23: 236007 (2009). Crossref
  3. R. Soto, G. Martinez, M. N. Baibich, J. M. Florez, and P. Vargas, Phys. Rev. B, 79, No. 18: 184422 (2009). Crossref
  4. A. N. Rudenko, V. V. Mazurenko, V. I. Anisimov, and A. I. Lichtenstein, Phys. Rev. B, 79: 144418 (2009). Crossref
  5. V. V. Mazurenko, F. Mila, and V. I. Anisimov, Phys. Rev., 73: 014418 (2006). Crossref
  6. S. P. Gubin, Rossiyskiy Khimicheskiy Zhurnal, XLIV, No. 6: 23 (2000) (in Russian).
  7. E. V. Galichina, D. V. Spirin, and V. N. Udodov, Fiziko-Khimicheskie Aspekty Izucheniya Klasterov, Nanostruktur i Nanomaterialov (Physico-Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials) (Eds. V. M. Samosonov and N. Yu. Sdobnyakov) (Tver: Tver State University: 2010), No. 2, p. 10 (in Russian).
  8. D. V. Spirin and V. N. Udodov, Materialy IX Vserossiyskogo Seminara 'Modelirovanie Neravnovesnykh Sistem' (October 13–15, 2006, Krasnoyarsk, Russia), p. 171 (in Russian).
  9. B. P. Gorshunov, A. V. Pronin, and A. S. Prokhorov, Fizika Tverdogo Tela, 53, No. 4: 774 (2011) (in Russian).
  10. V. N. Udodov, Yu. I. Paskal', A. I. Potekaev et al., Metallofiz. Noveishie Tekhnol., 16, No. 5: 43 (1994) (in Russian).
  11. M. E. Shabunin and E. V. Shabunina, Materialy Pervoy Vserossiyskoy Konferentsii 'Perspektivnye Materialy v Tekhnike i Stroitel'stve' (October 21–25, 2013) (Tomsk: Izdatel'stvo Tomskogo Gosudarstvennogo Arkhitekturno-Stroitel'nogo Universiteta: 2013), p. 289 (in Russian).
  12. K. S. Aleksandrov, N. V. Fedoseeva, and I. P. Spevakova, Magnitnye Fazovye Perekhody v Galoidnykh Kristallakh (Magnetic Phase Transitions in Halide Crystals) (Novosibirsk: Nauka: 1983) (in Russian).
  13. Yu. V. Rakitin and V. T. Kalinnikov, Sovremennaya Magnitokhimiya (Modern Magnetochemistry) (Saint-Petersburg: Nauka: 1994) (in Russian).
  14. R. L. Carlin, Magnetochemistry (Berlin–Heidelberg: Springer-Verlag: 1986). Crossref
  15. H. Müller-Krumbhaar and D. P. Landau, Phys. Rev. B, 14: 2014 (1976). Crossref
  16. A. A. Abrikosov, Fundamentals of the Theory of Metals (Amsterdam: North-Holland: 1988).
  17. H. Gould, J. Tobochnik, and W. Christian, An Introduction to Computer Simulation Methods: Applications to Physical Systems (Reading, MA: Addison-Wesley: 2006).
  18. M. M. Bogolyubov, Lektsii z Kvantovoyi Statystyky (Lectures on Quantum Statistics) (Kyiv: Radyans'ka Shkola: 1949) (in Ukrainian).