Reflection of Slow Electrons from Graphene on (110)Mo

M. M. Nishchenko, S. V. Smolnyk, M. Ya. Shevchenko

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 20.04.2015. Download: PDF

The effect of segregation of carbon on atomically clean surface of Mo(110) heated in ultrahigh vacuum on both the reflection of slow (0—50 eV) electrons by total current spectroscopy (TCS) and the work function $\varphi$ by the contact potential difference are studied. During the annealing at $Т_{anneal}$ = 1400—2000 K, the $\varphi$ value gradually decreases by $\Delta \varphi$ = 0.18 eV (up to 4.82 $\pm$ 0.02 eV), and it is accompanied by a monotonic shift of the two major minima in TCS to meet each other on $\Delta E$ = 1.2 eV to the values of $E$ = 4.8 and 12.5 eV, which are typical for the plasmon excitation in graphene in $\pi$-conduction band and ($\pi + \sigma$)-valence band, respectively. Minima indicate the electrons’ emission in the opposite direction, and their shifts are caused by energy shift of the conduction $\pi$-band upward and $\sigma$-valence band downwards. Annealing at $Т_{anneal}$ = 2200—2700 K does not change the $\varphi$ value and all parameters of the TCS, and the status of such a surface becomes thermodynamically stable for graphene on Mo(110). Graphene increases the number of peaks of electrons’ reflection from three to five, and reduces by several times the reflection coefficient, which drops almost to zero with $E$ increasing.

Key words: graphene, work function, electron reflection coefficient, total current spectroscopy.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i09/1183.html

DOI: https://doi.org/10.15407/mfint.37.09.1183

PACS: 65.40.gh,68.35.B-,68.35.Dv,68.47.De,68.49.Jk,68.65.Pq,73.22.Pr,81.05.ue

Citation: M. M. Nishchenko, S. V. Smolnyk, and M. Ya. Shevchenko, Reflection of Slow Electrons from Graphene on (110)Mo, Metallofiz. Noveishie Tekhnol., 37, No. 9: 1183—1201 (2015) (in Russian)


REFERENCES
  1. A. K. Geim, Science, 324, No. 5934: 1530 (2009). Crossref
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature, 438: 197 (2005). Crossref
  3. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 438: 201 (2005). Crossref
  4. A. K. Geim and K. S. Novoselov, Nature Mater., 6: 183 (2007). Crossref
  5. G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. Van den Brink, and P. J. Kelli, Phys. Rev. Lett., 101: 026803 (2008). Crossref
  6. S. Yu. Davydov, Fizika i Tekhnika Poluprovodnikov, 45: 1102 (2011) (in Russian).
  7. S. Hagstrom, H. B. Lyon, and G. A. Somorjai, Phys. Rev. Lett., 15: 491 (1965). Crossref
  8. H. B. Lyon and G. A. Somorjai, J. Chem. Phys., 46: 2539 (1967). Crossref
  9. A. E. Morgan and G. A. Somorjai, Surf. Sci., 12: 405 (1968). Crossref
  10. J. W. May, Surf. Sci., 17: 267 (1969). Crossref
  11. J. T. Grant and T. W. Haas, Surf. Sci., 21: 76 (1970). Crossref
  12. S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D. H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Nature Mater., 6: 770 (2007). Crossref
  13. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett., 9: 30 (2009). Crossref
  14. H. Cao, Q. Yu, D. Pandey, R. Colby, D. Pandley, C. S. Park, J. Lian, D. Zemlianov, I. Childres, V. Drachev, E. A. Stach, M. Hussian, H. Li, S. S. Pei, and Y. P. Chen, J. Appl. Phys., 107: 044310 (2010). Crossref
  15. C. Shelton, H. R. Patil, and J. M. Blakely, Surf. Sci., 43: 493 (1974). Crossref
  16. M. Eizenberg and J. M. Blakely, Surf. Sci., 82: 228 (1979). Crossref
  17. J. C. Hamilton and J. M. Blakely, Surf. Sci., 91: 199 (1980). Crossref
  18. N. R. Gall, N. P. Lavrovskaya, E. V. Rutkov, and A. Ya. Tontegode, Zhurn. Tekhn. Fiz., 74, No. 2: 105 (2004) (in Russian).
  19. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306: 666 (2004). Crossref
  20. B. Wang, Ya. Zhang, Zh. Chen, Y. Wu, Zh. Jin, Xi Liu, Li. Hu, and G. Yu, Mat. Lett., 93: 165 (2013). Crossref
  21. J. Wintterlin and M. L. Bocquet, Surf. Sci., 603: 1841 (2009). Crossref
  22. A. Nagashima, N. Tejima, and C. Oshima, Phys. Rev. B, 50: 17487 (1994). Crossref
  23. A. Gruneis and D. V. Vyalikh, Phys. Rev. B, 77: 193401 (2008). Crossref
  24. Y. S. Dedkov, M. Fonin, U. Rudiger, and C. Laubschat, Phys. Rev. Lett., 100: 107602 (2008). Crossref
  25. T. Seyller, K. V. Emtsev, K. Gao, F. Speck, L. Ley, A. Tadich, L. Broekman, J. D. Riley, R. C. G. Leckey, O. Rader, A. Varykhalov, and A. M. Shikin, Surf. Sci., 600: 3906 (2006). Crossref
  26. S. Sahoo, T. Kontos, J. Fuber, C. Hoffmann, M. Graeber, A. Cottet, and C. Schoenenberger, Nature Phys., 1: 99 (2005). Crossref
  27. N. Tombros, C. Jozsa, M. Popincluc, H. T. Jonkman, and B. J. Wees, Nature, 448: 571 (2007). Crossref
  28. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. Marchenkov, E. Conrad, P. N. First, and W. A. Heer, Science, 312: 1191 (2006). Crossref
  29. I. Pletikosic, M. Kralj, P. Pervan, R. Brako, J. Coraux, A. T. N'Diaye, C. Busse, and T. Michely, Phys. Rev. Lett., 102: 056808 (2009). Crossref
  30. P. W. Sutter, J.-I. Flege, and E. A. Sutter, Nature Mater., 7: 406 (2008). Crossref
  31. E. V. Rutkov and N. R. Gall, Fiz. Tverd. Tela, 51, No. 8: 1639 (2009).
  32. V. I. Silantiev and N. A. Shevchenko, Vysokochistye Veshchestva, 4: 197 (1988) (in Russian).
  33. M. M. Nishchenko, S. V. Smolnik, and N. A. Shevchenko, Metallofiz. Noveishie Tekhnol., 37, No. 1: 67 (2015) (in Russian). Crossref
  34. R. L. Gerlach, Surf. Sci., 28, No. 2: 648 (1971). Crossref
  35. B. Ya. Melamed, V. I. Silantiev, and N. A. Shevchenko, Fizicheskie Metody Issledovaniya Metallov [Physical Methods of Metals Studying] (Kiev: Naukova Dumka: 1981) (in Russian).
  36. I. Ya. Dehtyar, B. Ya. Melamed, V. I. Silantiev, and N. A. Shevchenko, Poverkhnost, 8: 55 (1982) (in Russian).
  37. S. A. Komolov, Integralnaya Vtorichno-Elektronnaya Spektroskopiya Poverkhnosti [Integral Secondary-Electron Spectroscopy of Surface] (Leningrad: Izd. Leningradskogo Universiteta: 1986) (in Russian).
  38. D. D. Koelling, F. M. Mueller, A. J. Arko, and J. B. Ketterson, Phys. Rev. B, 10: 4889 (1974). Crossref
  39. V. E. Borisenko, A. I. Vorobieva, and E. A. Utkina, Nanoelektronika [Nanoelectronics] (Moscow: BINOM: 2009) (in Russian).
  40. V. P. Dragunov, I. G. Neizvestniy, and V. A. Gridchin, Osnovy Nanoelektroniki [Fundamentals of Nanoelectronics] (Moscow: Lotos: 2006) (in Russian).
  41. I. M. Bronshtein and B. S. Fraiman, Vtorichnaya Elektronnaya Emissiya [Secondary Electron Emission] (Moscow: Nauka: 1969) (in Russian).
  42. D. Pains, Uspekhi Fizicheskikh Nauk, 62: 4 (1957).
  43. M. M. Brzhezinskaya and E. M. Baitinger, Trends in Carbon Nanotube Research (New York: Nova Science Publishers, Inc.: 2005).
  44. M. H. Gass, M. H., U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, and A. K. Geim, Nature Nanotechnology, 3: 676 (2008). Crossref
  45. Yu. M. Shul'ga, V. I. Rubtsov, and A. S. Lobach, Z. Phys. B. Condensed Matter, 93, No. 3: 327 (1994). Crossref