Temperature Dependence of the Acoustic and Mechanical Properties of Cast and Annealed High-Entropy Al$_{0.5}$CoCuCrNiFe Alloy

Yu. O. Semerenko$^{1}$, O. D. Tabachnikova$^{1}$, T. M. Tikhonovska$^{2}$, I. V. Kolodiy$^{2}$, O. S. Tortika$^{2}$, S. E. Shumilin$^{1}$, M. O. Laktionova$^{1}$

$^{1}$B.I. Verkin Institute for Low Temperature Physics and Engineering, NAS of Ukraine, 47 Nauky Ave., 61103 Kharkiv, Ukraine
$^{2}$National Science Center Kharkov Institute of Physics and Technology, NAS of Ukraine, 1 Akademicheskaya Str., 61108 Kharkov, Ukraine

Received: 26.08.2015. Download: PDF

For the first time, the acoustic and mechanical properties of the high-entropy Al$_{0.5}$CoCuCrNiFe alloy in the cast and annealed states are studied in the temperature range of 0.5—300 K. The structure of the cast and annealed high-entropy Al$_{0.5}$CoCuCrNiFe alloy is studied by means of optical microscopy, X-ray diffraction, scanning electron microscopy, and X-ray microanalysis. As found in the as-cast alloy, dendritic structure is formed. Annealing leads to a change in the structure and chemical composition of structural areas that causes a significant change in the acoustic and mechanical properties in the studied temperature range.

Key words: high-entropy Al$_{0.5}$CoCuCrNiFe alloy, strength, plasticity, acoustic absorption, dynamic modulus of elasticity.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i11/1527.html

DOI: https://doi.org/10.15407/mfint.37.11.1527

PACS: 43.35.Zc, 61.72.Ff, 61.72.S-, 62.40.+i, 64.70.kd, 68.70.+w, 81.40.Ef

Citation: Yu. O. Semerenko, O. D. Tabachnikova, T. M. Tikhonovska, I. V. Kolodiy, O. S. Tortika, S. E. Shumilin, and M. O. Laktionova, Temperature Dependence of the Acoustic and Mechanical Properties of Cast and Annealed High-Entropy Al$_{0.5}$CoCuCrNiFe Alloy, Metallofiz. Noveishie Tekhnol., 37, No. 11: 1527—1538 (2015) (in Russian)


REFERENCES
  1. Yu. Semerenko, E. Tabachnikova, M. Laktionova, S. Shumilin, M. Tichonovskiy, I. Kolodiy, T. Tichonovskaya, A. Tortika, G. Salishchev, N. Stepanov, and D. Shaysultanov, Proc. of III Int. Conf. 'Basic Research and Innovative Technologies in Mechanical Engineering' (May 13–15, 2014, Moscow, Russia), p. 285.
  2. Ch.-J. Tong, Yu-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-Ts. Shun, Ch.-H. Tsau, and Sh.-Y. Chang, Metallurgical and Materials Transactions A, 36, Iss. 4: 881 (2005). Crossref
  3. G. Leibfried, Gittertheorie der Mechanischen und Thermischen Eigenschaften der Kristalle [Lattice Theory of Mechanical and Thermal Properties of Crystals] (Berlin–Heidelberg: Springer: 1963), vol. 7/1, p. 104 (in German).
  4. K. B. Zhang, Z. Y. Fu, J. Y. Zhang, W. M. Wang, H. Wang, Y. C. Wang, Q. J. Zhang, and J. Shi, Materials Science and Engineering A, 508, Iss. 1–2: 214 (2009). Crossref
  5. D. G. Shaysultanov, N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, and O. N. Senkov, J. of Metals, 65, No. 12: 1815 (2013).
  6. Ch.-W. Tsai, M.-H. Tsai, J.-W. Yeh, and Ch.-Ch. Yang., J. Alloys Compd., 490: 160 (2010). Crossref
  7. Ch. Ng, Sh. Guo, J. Luan, S. Shi, and C. T. Liu., Intermetallics, 31: 165 (2012). Crossref