Generalization of the Kinetic Mean-Field Method for Vacancy Diffusion Mechanism and Application of It to Spinodal Decomposition

V. M. Bezpalchuk, A. M. Gusak

Bohdan Khmelnytsky National University of Cherkasy, 81 Shevchenko Blvd., 18031 Cherkasy, Ukraine

Received: 25.09.2015. Download: PDF

The paper presents a generalization of the Martin—Erdélyi—Beke kinetic mean-field method for vacancy diffusion mechanism within the quasistationary approximation of vacancies. The simulation of spinodal decomposition with using the generalized method for the two-dimensional and three-dimensional cases is made. The dependences of the spinodal decomposition parameters (characteristic inhomogeneity and deviation of concentration) on the mobilities of components and on the asymmetry coefficient are presented. The exponential-growth rate of the deviation is determined by the slow component and is practically independent on the initial noise in the system.

Key words: diffusion, spinodal decomposition, mean-field method, vacancies, modelling.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i12/1583.html

DOI: https://doi.org/10.15407/mfint.37.12.1583

PACS: 61.72.Bb, 61.72.Cc, 64.60.De, 64.60.Q-, 64.75.-g, 66.30.Dn, 81.30.-t

Citation: V. M. Bezpalchuk and A. M. Gusak, Generalization of the Kinetic Mean-Field Method for Vacancy Diffusion Mechanism and Application of It to Spinodal Decomposition, Metallofiz. Noveishie Tekhnol., 37, No. 12: 1583—1593 (2015) (in Ukrainian)


REFERENCES
  1. G. Martin, Phys. Rev. B, 41: 2279 (1990). Crossref
  2. Z. Erdélyi, G. L. Katona, and D. L. Beke, Phys. Rev. B, 69: 113407 (2004). Crossref
  3. Z. Erdélyi, M. Sladecek, Lorenz-M. Stadler, I. Zizak, G. A. Langer, M. Kis-Varga, D. L. Beke, and B. Sepiol, Science, 306: 1913 (2004). Crossref
  4. Z. Erdélyi, I. A. Szabó, and D. Beke, Phys. Rev. Lett., 89: 165901 (2002). Crossref
  5. Z. Erdélyi, D. Beke, and A. Taranovskyy, Appl. Phys. Lett., 92: 133110 (2008). Crossref
  6. N. Storozhuk, K. Sopiga, and A. Gusak, Philosophical Magazine, 93: 1999 (2013). Crossref
  7. A. G. Khachaturyan, Theory of Structural Transformations in Solids (Newburyport: Dover Publications: 2013).
  8. Z. Erdélyi, H. Bakker, and D. L. Beke, Acta Univ. Deb., 34–35: 321 (2002).
  9. N. V. Tyutyunnyk and A. M. Gusak, Ukrayins'kyy Fizychnyy Zhurnal, 57: 628 (2012).