Carbon, Nitrogen and Hydrogen in Iron-Based Solid Solutions: Similarities and Differences in their Effect on Structure and Properties

V. G. Gavriljuk

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 18.12.2015. Download: PDF

Interstitial N, C and H atoms in iron-based solid solutions are compared in terms of their effect on the structure and properties. Electronic structure and stacking fault energy, atomic distribution, interaction of interstitial atoms with dislocations and vacancies, mobility of dislocations, mechanisms of deformation and fracture are compared based on theoretical calculations and experimental observations. As shown, nitrogen and hydrogen increase the electron density of states at the Fermi level of f.c.c. iron, whereas carbon decreases it. Correspondingly, the concentration of free electrons increases within the nitrogen and hydrogen iron-based solid solutions and decreases in the carbon ones. A correlation is revealed between the character of interatomic bonds and the short-range atomic order in the studied solid solutions: nitrogen assists short-range atomic ordering in the spatial distribution of alloying elements, whereas carbon promotes their clustering. As consequence, nitrogen increases thermodynamical stability of austenitic steels, whereas carbon makes steel sensitive to precipitation of carbides from the solid solution that deteriorates corrosive characteristics. The most impressive is a correlation between the change in the electronic structure and properties of dislocations. In contrast to prevailing covalent bonds in carbon steels, the enhanced metallic character of interatomic bonds, as caused by nitrogen, increases mobility of dislocations that results in excellent plasticity and fracture toughness. However, the same effect caused by hydrogen is a cause of the hydrogen embrittlement through the hydrogen-enhanced localized plasticity. A unique similarity with hydrogen embrittlement becomes apparent in the course of impact loading of austenitic nitrogen steels, where, due to the absence of sufficient time for relaxation of stresses, the nitrogen-enhanced localized plasticity occurs resulting in a pseudo-brittle fracture. The different is only the mechanism for localization of plastic deformation: the shortrange atomic ordering caused by nitrogen and the increased concentration of superabundant vacancies due to hydrogen dissolution.

Key words: carbon, nitrogen, hydrogen, electronic structure, short-range atomic order, thermodynamical stability, deformation, fracture.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i01/0067.html

DOI: https://doi.org/10.15407/mfint.38.01.0067

PACS: 61.66.Dk, 61.72.J-, 61.72.Lk, 61.72.Nn, 62.20.mj, 62.20.mm, 64.75.Nx, 71.55.Ak

Citation: V. G. Gavriljuk, Carbon, Nitrogen and Hydrogen in Iron-Based Solid Solutions: Similarities and Differences in their Effect on Structure and Properties, Metallofiz. Noveishie Tekhnol., 38, No. 1: 67—98 (2016)


REFERENCES
  1. V. G. Gavriljuk and H. Berns, High Nitrogen Steels (Berlin: Springer Verlag: 1999) Crossref
  2. H. Berns, V. G. Gavriljuk, and S. Riedner, High Interstitial Stainless Steels (Heidelberg: Springer: 2013) Crossref
  3. H. K. Birnbaum and P. Sofronis, Mat. Sci. Eng. A, 176: 191 (1994) Crossref
  4. S. P. Lynch, Acta Metall., 36, No. 10: 2639 (1988) Crossref
  5. M. Nagumo, ISIJ Intern., 41, No. 6: 590 (2011) Crossref
  6. V. G. Gavriljuk, B. D. Shanina, V. N. Shyvanyuk, and S. M. Teus, Corrosion Rev., 31, No. 2: 33 (2013) Crossref
  7. S. M. Teus, V. N. Shyvanyuk, B. D. Shanina, and V. G. Gavriljuk, phys. status solidi (a), 204, No. 12: 4249 (2007) Crossref
  8. D. N. Movchan, V. N. Shyvanyuk, B. D. Shanina, and V. G. Gavriljuk, phys. status solidi (a), 207, No. 8: 1796 (2010) Crossref
  9. V. G. Gavriljuk, B. D. Shanina, V. N. Syvanyuk, and S. M. Teus. J. Appl. Phys., 108: 083723 (2010) Crossref
  10. V. G. Gavriljuk, B. D. Shanina, N. P. Baran, and V. M. Maximenko, Phys. Rev. B, 48, No. 5: 3224 (1993) Crossref
  11. B. D. Shanina, S. P. Kolesnik, A. A. Konchitz, V. G. Gavriljuk, S. Yu. Smouk, and A. V. Tarasenko, Solid State Commun., 90, No. 2: 109 (1994) Crossref
  12. B. D. Shanina, V. G. Gavriljuk, A. A. Konchitz, S. P. Kolesnik, and A. V. Tarasenko, phys. status solidi (a), 149, No. 2: 711 (1995) Crossref
  13. B. D. Shanina, V. G. Gavriljuk, S. P. Kolesnik, and V. N. Shivanyuk, J. Phys. D: Appl. Phys., 32: 298 (1999) Crossref
  14. W. Seith, Diffusion in Metallen, Platzwechselreaktionen (Berlin–Göttingen–Heidelberg: Springer-Verlag: 1955) Crossref
  15. H. Nakajima and K. Hirano, ISIJ Intern., 19: 400 (1978)
  16. A. L. Sozinov, A. G. Balanyuk, and V. G. Gavriljuk, Acta Mater., 45, No. 1: 225 (1997) Crossref
  17. A. L. Sozinov, A. G. Balanyuk, and V. G. Gavriljuk, Acta Mater., 47, No. 3: 927 (1999) Crossref
  18. A. G. Balanyuk, V. G. Gavriljuk, V. N. Shivanyuk, A. I. Tyshchenko, and J. Rawers, Acta Mater., 48, No. 15: 3813 (2000) Crossref
  19. V. G. Gavriljuk, B. D. Shanina, and H. Berns, Acta Mater., 48, No. 15: 3879 (2000) Crossref
  20. B. Shanina, V. Gavriljuk, H. Berns, and F. Schmalt, Steel Research, 73, No. 3: 105 (2002) Crossref
  21. V. G. Gavriljuk, B. D. Shanina, and H. Berns, Acta Mater., 56: 5071 (2008) Crossref
  22. J. H. Pifera and R. T. Longo, Phys. Rev. B, 4: 3797 (1971) Crossref
  23. V. G. Gavriljuk, A. L. Sozinov, A. G. Balanyuk, S. V. Grigoriev, O. A. Gubin, G. P. Kopitsa, A. I. Okorokov, and V. V. Runov, Mater. Trans. A, 28, No. 11: 2195 (1997) Crossref
  24. I. I. Gurevich and T. V. Tarasov, Physics of Low Energy Neutrons (Moscow: Nauka: 1965) (in Russian)
  25. B. D. Shanina, V. G. Gavriljuk, A. A. Konchitz, and S. P. Kolesnik, J. Phys.: Condens. Matter, 10: 1825 (1998) Crossref
  26. H. Thier, A. Bäumel, und E. Schmidtmann, Arch. Eisenhüttenwesen, 40, No. 4: 333 (1969) Crossref
  27. U. Heubner, M. Rockel, und E. Wallis, Werkstoffe und Korrosion, 40: 459 (1989) Crossref
  28. S. Hertzman, Scand. J. Metallurgy, 24: 140 (1995)
  29. R. F. A. Jargelius-Pettersson, Z. Metallkd., 89, No. 3: 177 (1998)
  30. H. Berns, V. A. Duz', R. Ehrhardt, V. G. Gavriljuk, and A. V. Tarasenko. Metallofiz. Noveishie Tekhnol., 15: 561 (1995) (in Russian)
  31. H. Berns, V. A. Duz', R. Ehrhardt, V. G. Gavriljuk, Yu. N. Petrov, and A. V. Tarasenko, Z. Metallkd., 88, No. 2: 109 (1997)
  32. A. Szumer and A. Janko, Corrosion, 35: 461 (1979) Crossref
  33. A. Inoue, Y. Hosoya, and T. Masumoto, ISIJ Intern., 19: 170 (1979)
  34. N. Narita, C. J. Altstetter, and H. K. Birnbaum, Metall. Trans. A, 13: 1355 (1982) Crossref
  35. A. G. Vakhney, A. N. Yaresko, V. N. Antonov, V. V. Nemoshkalenko, V. G. Gavriljuk, V. A. Tarasenko, and I. Smurov, J. Phys.: Condens. Matter, 10: 6987 (1998) Crossref
  36. D. N. Movchan, B. D. Shanina, and V. G. Gavriljuk, Int. J. Hydrogen Energy, 38: 8471 (2013) Crossref
  37. N. I. Noskova, V. A. Pavlov, and S. A. Nemnonov, Fiz. Met. Metalloved., 20, No. 6: 920 (1965) (in Russian)
  38. R. E. Schramm and R. P. Reed, Metall. Trans. A, 6: 1345 (1975) Crossref
  39. A. E. Pontini and J. D. Hermida, Scr. Mater., 37: 1831 (1997) Crossref
  40. R. Fawley, M. A. Quader, and R. A. Dodd, Trans. TMS AIME, 242: 771 (1968)
  41. P. R. Swann, Corrosion, 19, No. 3: 102 (1963) Crossref
  42. D. Dulieu and J. Nutting, Metallurgical Developments in High-Alloy Steels Proc. (London: Iron and Steel Institute: 1964), p. 140
  43. R. E. Stoltz and J. B. Vander Sande, Metall. Trans. A, 11, No. 6: 1033 (1980) Crossref
  44. V. Gavriljuk, Yu. Petrov, and B. Shanina, Scr. Mater., 55: 537 (2006) Crossref
  45. V. G. Gavriljuk, A. L. Sozinov, J. Foct, Yu. N. Petrov, and A. A. Polushkin, Acta Mater., 46, No. 4: 1157 (1998) Crossref
  46. R. B. McLellan, J. Phys. Chem. Sol., 49: 1213 (1988) Crossref
  47. A. M. Bobyr, V. N. Bugaev, and A. A. Smirnov, Doklady Akad. Nauk USSR, 320: 1113 (1991) (in Russian)
  48. Y. Fukai and N. Okuma, Jpn. J. Appl. Phys., 32, No. 2: L1256 (1993) Crossref
  49. V. G. Gavriljuk, V. N. Bugaev, Yu. N. Petrov, A. V. Tarasenko, and B. Z. Yanchitsky, Scr. Mater., 34, No. 6: 903 (1996) Crossref
  50. M. Kikuchi, T. Tanaka, and R. Tanaka, Metall. Trans., 5, No. 6: 1520 (1974) Crossref
  51. M. Kikuchi, Proc. University of Tokyo–Harbin Institute of Technology Symposium on Materials Science (May 20–22, 1985) (Tokyo: 1985), p. 22
  52. V. G. Gavriljuk, V. A. Duz', S. P. Yefimenko, and O. G. Kvasnevsky, Fiz. Met. Metalloved., 64, No. 6: 1132 (1987) (in Russian)
  53. V. G. Gavriljuk, V. A. Duz', and S. P. Yephimenko, Proc. of 1st Intern. Conf. 'High Nitrogen Steels' (May 18–20, 1988) (London: Institute of Metals: 1989), p. 447
  54. V. G. Gavriljuk, H. Berns, Ch. Escher, N. I. Glavatska, A. Sozinov, and Yu. N. Petrov, Mat. Sci. Eng. A, 271: 14 (1999) Crossref
  55. A. Atrens, N. F. Fiore, and K. Miura, J. Appl. Phys., 48: 4247 (1977) Crossref
  56. V. G. Gavriljuk, B. D. Shanina, V. N. Shyvanyuk, and S. M. Teus, Proc. of the 2012 International Hydrogen Conference (September 9–12, 2012, Wyoming) (New York: ASME Press: 2014), p. 67
  57. V. G. Gavriljuk, N. P. Kushnareva, and V. G. Prokopenko, Fiz. Met. Metalloved., 42, No. 6: 1288 (1976) (in Russian)
  58. A. Zelinski, E. Lunarska, and M. Smialowski, Acta Metall., 25: 551 (1977) Crossref
  59. G. Schoeck, E. Bisogni, and J. Shyne, Acta Metall., 12: 1466 (1964) Crossref
  60. A. Rivière, J. P. Amirault, and J. Woirgard, Il Nuovo Cimento, 33: 398 (1976) Crossref
  61. G. Schoeck, Acta Metall., 11: 617 (1963) Crossref
  62. A. Seeger, phys. status solidi (a), 55: 457 (1979) Crossref
  63. K. Takita and K. Sakamoto, Scr. Metall., 10, No. 5: 399 (1976) Crossref
  64. J.-O. Nilsson and T. Thorwaldsson, Scand. J. Metallurgy, 15: 83 (1985)
  65. M. Grujicic, Mater. Sci. Eng. A, 183: 223 (1994) Crossref
  66. M. Grujicic and X. W. Zhou, Mater. Sci. Eng. A, 190: 8 (1995) Crossref
  67. A. Nyilas, B. Obst, and H. Nakajima, Proc. 3rd Intern. Conf. 'High Nitrogen Steels' (September 14–16, 1993) (Eds. V. G. Gavriljuk and V. M. Nadutov) (Kiev: Institute for Metal Physics: 1993), p. 339
  68. A. Seeger, Philos. Mag., 46, No. 382: 1194 (1955) Crossref
  69. V. G. Gavriljuk, A. L. Sozinov, J. Foct, Yu. N. Petrov, and A. A. Polushkin, Acta Mater., 46, No. 4: 1157 (1998) Crossref
  70. L. A. Norström, Metal Sci., 11, No. 6: 208 (1977) Crossref
  71. H. J. Köstler und H. Sidan, Z. Wirtsch Fert, 72, No. 10: 785 (1977)
  72. N. J. Petch, J. Iron Steel Inst., 174: 25 (1953)
  73. H. Conrad, Acta Metall., 11, No. 1: 75 (1963) Crossref
  74. J. C. M. Li, Trans TMS AIME, 227, No. 2: 239 (1963)
  75. J. Sassen, A. J. Garrat-Reed, and W. S. Owen, Proc. of 1st Intern. Conf. 'High Nitrogen Steels' (May 18–20, 1988) (London: Institute of Metals: 1989), p. 159
  76. B. P. Kashyap and K. Tangri, Acta Metall. Mater., 43, No. 11: 3971 (1995) Crossref
  77. N. D. Afanasyev, V. G. Gavriljuk, V. A. Duz', V. L. Svechnikov, and V. M. Nadutov, Fiz. Met. Metalloved., 8: 121 (1990) (in Russian)
  78. P. J. Uggowitzer and M. O. Speidel, Proc. 2nd Intern. Conf. 'High Nitrogen Steels' (October 10–12, 1990) (Düsseldorf: Stahl und Eisen: 1990), p. 156
  79. Yu. N. Petrov, V. G. Gavriljuk, H. Berns, and Ch. Escher, Scr. Mater., 40, No. 6: 69 (1999) Crossref
  80. Yu. N. Petrov, Scr. Metall. Mater., 29: 1471 (1993) Crossref
  81. A. H. Cottrell, Trans. TMS–AIME, 212: 192 (1958)
  82. J. Frehser und Ch. Kubisch, Berg und Hüttenmännische Monatshefte, 108, No. 11: 369 (1963)
  83. M. A. E. Harzenmoser, Massive Aufgestickte Austenitisch-Rostfreie Stähle und Duplexstähle (Thesis of Disser. for Dr. Sci.) (Zürich: Eidgenössische Technische Hochschule: 1990)
  84. P. J. Uggowitzer, N. Paulus, and M. O. Speidel, Application of Stainless Steels'92 (Stockholm: The Institute of Metals: 1992), p. 62
  85. D. G. Ulmer and C. J. Altstetter, Acta Metall. Mater., 39: 1237 (1991) Crossref
  86. H. Hänninen and T. Hakkarainen, Metal. Trans. A, 10: 1196 (1979) Crossref
  87. Y. Tomota, Y. Xia, and K. Inoue, Acta Mater., 46, No. 5: 1577 (1998) Crossref
  88. V. G. Gavriljuk, D. S. Hertsricken, V. M. Falchenko, and Yu. A. Polushkin, Fiz. Met. Metalloved., 51, No. 1: 147 (1981) (in Russian)
  89. D. Teirlinck, F. Zok, J. D. Embury, and M. F. Ashby, Acta Metall., 36, No. 5: 1213 (1988) Crossref