Evolution of Structure of Multilayer Si/Mg$_{2}$Si X-Ray Mirrors at Thermal Influence

L. E. Konotopskyi, I. A. Kopylets, V. A. Sevrykova, E. N. Zubarev, V. V. Kondratenko

National Technical University ‘Kharkiv Polytechnic Institute’, 21 Kyrpychov Str., 61002 Kharkiv, Ukraine

Received: 29.04.2016. Download: PDF

The study of multilayer Si/Mg$_{2}$Si structure in initial state and after thermal annealing in temperature range 50—750°C by the methods of small-angle X-ray diffraction and cross-section transmission electron microscopy is carried out. As-deposited silicide layers are amorphous. Magnesium silicide layers are amorphous with nanocrystalline inclusions of Mg$_{2}$Si in metastable hexagonal modification. After thermal annealing at T = 450°C, the Mg$_{2}$Si layers are crystallized with increasing in density and, correspondingly, with 7.3% reduction in period of the Si/Mg$_{2}$Si multilayer. The further annealing of Si/Mg$_{2}$Si multilayer results in crystallization of Si layers in temperature range 500—600°C. Consequently, period of the Si/Mg$_{2}$Si multilayer is decreased by 6.36%.

Key words: X-ray mirror, magnesium silicide, X-ray phase analysis, electron microdiffraction.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i06/0825.html

DOI: https://doi.org/10.15407/mfint.38.06.0825

PACS: 07.85.Fv, 61.05.cp, 61.05.jm, 68.35.Ct, 68.37.Lp, 68.60.Dv, 68.65.Ac, 81.40.Ef

Citation: L. E. Konotopskyi, I. A. Kopylets, V. A. Sevrykova, E. N. Zubarev, and V. V. Kondratenko, Evolution of Structure of Multilayer Si/Mg$_{2}$Si X-Ray Mirrors at Thermal Influence, Metallofiz. Noveishie Tekhnol., 38, No. 6: 825—838 (2016) (in Russian)


REFERENCES
  1. E. Spiller, Appl. Phys. Lett., 20, No. 1: 365 (1972). Crossref
  2. Y. Platonov and K. Shimizu, Magnesium Silicide-Based Multilayer X-Ray Fluorescence Analyzers: Patent US 20090225937 A1.
  3. I. A. Zhitnik, S. V. Kuzin, A. M. Urnov, I. L. Beigman, S. A. Bozhenkov, and I. Yu. Tolstikhina, Astron. Lett., 31, No. 1: 37 (2005). Crossref
  4. http://sci-progs.com
  5. T. Makino, K. Kamoshida, and E. Yamamoto, Japanese J. Appl. Phys., 23, No. 10: 1304 (1984). Crossref
  6. J. S. Custer, M. O. Thompson, D. C. Jacobson, J. M. Poate, S. Roorda, W. C. Sinke, and F. Spaepen, Appl. Phys. Lett., 64, No. 1: 437 (1994). Crossref
  7. T. Peun, J. Lauterjung, and E. Hinze, Nucl. Instrum. Methods Phys. Res. B, 97: 483 (1995). Crossref
  8. P. Cannon and E. T. Conlin, Science, 145, No. 3631: 487 (1964). Crossref
  9. J. Hao, B. Zou, P. Zhu, C. Gao, Y. Liu, K. Wang, W. Lei, and Q. Cui, Solid State Commun., 149, No. 17: 689 (2009). Crossref
  10. J. A. Thornton, J. Tabock, and D. W. Hoffman, Thin Solid Films, 64, No. 1: 111 (1979). Crossref
  11. V. Yu. Kulikovskyi, V. Vorlichek, P. Bogach, M. Strainaynek, P. Chtvertlik, A. V. Kurdyumov, and V. F. Gorban, Nanostrukturnoe Materialovedenie, No. 1: 42 (2008) (in Russian).
  12. T. D. Nguyen and T. W. Barbee, Proc. SPIE, 3444: 543 (1998). Crossref
  13. B. G. Cohen and M. W. Focht, Solid State Electron., 13, No. 2: 105 (1970). Crossref
  14. T. Yamaguchi, T. Serikawa, M. Henmi, H. Oginuma, and K. Kondoh, Mater. Trans., 47, No. 4: 1026 (2006). Crossref
  15. T. Serikawa, M. Henmi, and K. Kondoh, J. Vac. Sci. Technol. A, 22, No. 5: 1971 (2004). Crossref
  16. S. A. Dotsenko, A. S. Gouralnik, N. G. Galkin, K. N. Galkin, A. K. Gutakovski, and M. A. Neklyudova, Mater. Chem. Phys., 148, No. 3: 1078 (2014). Crossref