Memristancy Effects in Solid-State Heterostructures

E. M. Rudenko$^{1}$, M. O. Bilogolovs’kyy$^{1}$, I. V. Korotash$^{1}$, D. Yu. Polots’kyy$^{1}$, A. O. Krakovnyy$^{1}$, O. S. Zhytlukhina$^{2}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine
$^{2}$Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 46 Nauky Ave., UA-03680 Kyiv, Ukraine

Received: 23.06.2016. Download: PDF

Physical nature of hysteretic transport characteristics of two solid-state structures is discussed. For heterocontacts formed by a metal counter electrode with a complex transition-metal oxide, it is shown that two-valued current—voltage dependences appear due to the migration of the O vacancies under the influence of an external electric field whereas a memristancy-like behaviour of nanostructured carbon films is due to the presence of current-carrier traps. As found in the latter case, an extremely high conductivity state of carbon film is formed after several periods of the alternating current flowing through it. The experimentally discovered asymmetry of the current—voltage characteristics for carbon films opens up a possibility of their application as a base element of an integrated memristor circuit able to eliminate a parasitic link between the adjacent switching nodes.

Key words: memristor, current—voltage characteristics, hysteresis, oxygen vacancies, nanostructured carbon films.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i08/0995.html

DOI: https://doi.org/10.15407/mfint.38.08.0995

PACS: 61.72.Hh, 73.40.Ns, 74.72.-h, 74.78.Fk, 81.40.Rs, 84.32.Ff, 85.25.Hv

Citation: E. M. Rudenko, M. O. Bilogolovs’kyy, I. V. Korotash, D. Yu. Polots’kyy, A. O. Krakovnyy, and O. S. Zhytlukhina, Memristancy Effects in Solid-State Heterostructures, Metallofiz. Noveishie Tekhnol., 38, No. 8: 995—1008 (2016) (in Russian)


REFERENCES
  1. L. O. Chua, IEEE Trans. Circuit Theory, 18, No. 5: 507 (1971). Crossref
  2. R. Waser and M. Aono, Nat. Mater., 6, No. 11: 833 (2007). Crossref
  3. A. Sawa, Mater. Today, 11, No. 6: 28 (2008). Crossref
  4. E. Bichoutskaia, A. M. Popov, and Yu. E. Lozovik, Mater. Today, 11, No. 6: 38 (2008). Crossref
  5. J. B. Goodenough, Rep. Prog. Phys., 67, No. 11: 1915 (2004). Crossref
  6. R. J. Cava, B. Batlogg, C. H. Chen, E. A. Rietman, S. M. Zahurak, and D. Werder, Nature, 329, No. 6138: 423 (1987). Crossref
  7. M. A. Belogolovskii, Centr. Eur. J. Phys., 7, No. 2: 304 (2009). Crossref
  8. N. Chandrasekhar, O. T. Valls, and A. M. Goldman, Phys. Rev. Lett., 71, No. 7: 1079 (1993). Crossref
  9. A. Plecenik, M. Grajcar, P. Seidel, and S. Benacka, Studies of High Temperature Superconductors (New York: Nova Science Publ.: 1996), vol. 20, p. 75.
  10. H. J. Zhang, X. P. Zhang, J. P. Shi, H. F. Tian, and Y.G. Zhao, Appl. Phys. Lett., 94, No. 9: 092111 (2009). Crossref
  11. R. Landauer, IBM J. Res. Dev., 1, No. 3: 223 (1957). Crossref
  12. A. Plecenik, M. Tomasek, T. Plecenik, M. Truchly, J. Noskovic, M. Zahoran, T. Roch, M. Belogolovskii, M. Spankova, S. Chromik, and P. Kus, Appl. Surf. Sci., 256, No. 18: 5684 (2010). Crossref
  13. M. Tomasek, T. Plecenik, M. Truchly, J. Noskovic, T. Roch, M. Zahoran, S. Chromik, M. Spankova, P. Kus, and A. Plecenik, J. Vac. Sci. Technol. B, 29, No. 1: 01AD04 (2011). Crossref
  14. T. Plecenik, M. Tomášek, M. Belogolovskii, M. Truchly, M. Gregor, J. Noskovič, M. Zahoran, T. Roch, I. Boylo, M. Špankova, Š. Chromik, P. Kúš, and A. Plecenik, J. Appl. Phys., 111, No. 5: 056106 (2012). Crossref
  15. K. Yamamoto, B. M. Lairson, J. C. Bravman, and T. H. Geballe, J. Appl. Phys., 69, No. 10: 7189 (1991). Crossref
  16. S. Inoue, M. Kawai, N. Ichikawa, H. Kageyama, W. Paulus, and Y. Shimakawa, Nat. Chem., 2, No. 3: 213 (2010). Crossref
  17. E. Linn, R. Rosezin, C. Kügeler, and R. Waser, Nat. Mater., 9, No. 5: 403 (2010). Crossref
  18. H. D. Kim, M. J. Yun, and T. G. Kim, Appl. Phys. Lett., 105, No. 21: 213510 (2015). Crossref
  19. I. V. Korotash, V. V. Odinokov, G. Ya. Pavlov, D. Yu. Polotskii, E. M. Rudenko, V. F. Semenyuk, V. A. Sologub, and K. P. Shamrai, Nanoengineering, No. 4 (10): 3 (2012) (in Russian).
  20. V. F. Semenyuk, Eh. M. Rudenko, I. V. Korotash, L. S. Osipov, D. Yu. Polotskiy, K. P. Shamray, V. V. Odinokov, G. Ya. Pavlov, and V. A. Sologub, Metallofiz. Noveishie Tekhnol., 33, No. 2: 223 (2011) (in Russian).
  21. I. Korotash, V. Odinokov, G. Pavlov, D. Polotskii, E. Rudenko, V. Semenyuk, and V. Sologub, Nanoindustry, No. 1: 10 (2011) (in Russian).
  22. A. Shpak, E. Rudenko, I. Korotash, V. Semenyuk, K. Shamrai, V. Odinokov, G. Pavlov, and V. Sologub, Nanoindustry, No. 4: 12 (2009) (in Russian).
  23. T. Matsumoto and S. Saito, Physica E, 29, No. 3: 560 (2005). Crossref
  24. Y. Chai, Y.Wu, K. Takei, H.-Y. Chen, S. Yu, P. C. H. Chan, A. Javey, and H.-S. P. Wong, IEEE Trans. Electron. Dev., 58, No. 11: 3933 (2011). Crossref
  25. M. Hori, Y. Tokuda, and H. Kano, Diode and Photovoltaic Device Using Carbon Nanostructure: Patent US 20100212728 A1 (2010).
  26. I. V. Korotash, Eh. M. Rudenko, A. O. Krakovnyy, V. F. Semenyuk, L. S. Osipov, and D. Yu. Polots’kyy, IV International Scientific Conference ‘Nanoscaled Systems: Structure, Properties, Technologies—NANSYS-2013’ (November 19–22, 2013, Kyiv), p. 333 (in Russian).