Mode of Deformation of Phase Components of a Ceramic Composite LaB$_{6}$—TiВ$_{2}$

P. I. Loboda$^{1}$, О. P. Karasevska$^{2}$, T. O. Soloviova$^{1}$

$^{1}$National Technical University of Ukraine ‘KPI’, 37 Peremohy Ave., 03056 Kyiv, Ukraine
$^{2}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 07.07.2016; final version - 22.08.2016. Download: PDF

Structure formation of LaB$_{6}$—TiB$_{2}$ composite obtained by floating zone melting method on the single crystal substrate and without it is studied by methods of microscopic and X-ray diffraction analysis. The residual macro- and microstresses are determined; formation of texture in the composites obtained by different methods is investigated. As found, in the matrix LaB$_{6}$ phase, the residual stresses different in sign and value appear in different crystallographic directions; contrariwise, in the TiB$_{2}$ fibres, residual-stresses homogeneity is observed. Therefore, cracks are extended in the matrix phase (avoid the fibre) in directions at some angles to the maximum load due to the presence of tensile stresses in the composite.

Key words: composite, non-equilibrium phase, residual stresses, crystallographic texture, the multilevel structure, brittleness.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i09/1249.html

DOI: https://doi.org/10.15407/mfint.38.09.1249

PACS: 61.72.Dd, 61.72.Ff, 61.72.Hh, 62.20.mj, 62.20.mt, 62.20.Qp, 62.23.Pq, 81.10.Jt

Citation: P. I. Loboda, О. P. Karasevska, and T. O. Soloviova, Mode of Deformation of Phase Components of a Ceramic Composite LaB$_{6}$—TiВ$_{2}$, Metallofiz. Noveishie Tekhnol., 38, No. 9: 1249—1263 (2016) (in Ukrainian)


REFERENCES
  1. P. Loboda, Powder Metall. Met. Ceram., 39, Iss. 9–10: 480 (2000). Crossref
  2. I. M. Low, Y. Sakka, and C. F. Hu, MAX Phases and Ultra High Temperature Ceramics for Extreme Environments (Hershey: IGI Global: 2013). Crossref
  3. P. I. Loboda, Fizyko-Khimichni Osnovy Stvorennya Novykh Borydnykh Materialiv dlya Elektronnoyi Tekhniky i Rozrobka Keramichnykh Katodnykh Vuzliv z Pidvyshchenoyu Efektyvnistyu [Physicochemical Basis for Formation of New Boride Materials for Electronic Engineering and Development of Ceramic Cathode Units with Advanced Efficiency] (Disser. for Dr. Techn. Sci.) (Kyiv: I. M. Frantsevych Institute for Problems in Materials Science, N.A.S. of Ukraine: 2004) (in Ukrainian).
  4. R. Riedel, Handbook of Ceramic Hard Materials (Weinheim: Wiley-VCH: 2000), vol. 1. Crossref
  5. F. Cardarelli, Materials Handbook (London–New York: Springer: 2000). Crossref
  6. Yu. Bogomol, T. Nishimura, O. Vasylkiv, Y. Sakka, and P. Loboda, J. Alloys Compd., 505, Iss. 1: 130 (2010). Crossref
  7. P. I. Loboda, Yu. I. Bogomol, M. O. Sysoev, and H. P. Kysla, Sverkhtverdye Materialy, 5: 30 (2006) (in Ukrainian).
  8. I. Bogomol, T. Nishimura, Y. Nesterenko, O. Vasylkiv, Y. Sakka, and P. Loboda, J. Alloys Compd., 509, Iss. 20: 6123 (2011). Crossref
  9. Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics (West Conshohocken, PA: ASTM International: 1999).
  10. W. Li, R. Tu, and T. Goto, Mater. Trans., 46: 2067 (2005). Crossref
  11. V. S. Kresanov, N. P. Malakhov, V. V. Morozov, N. N. Semashko, and V. Ya. Shlyuko, Vysokoeffektivnyy Emitter Elektronov na Osnove Geksaborida Lantana [High-Performance Electron Emitter on the Basis of Lanthanum Hexaboride] (Moscow: Energoatomizdat: 1987) (in Russian).
  12. M. A. Krivoglaz, Difraktsiya Rentgenovskikh Luchey i Neytronov v Neideal'nykh Kristallakh [X-Ray and Neutron Diffraction in Nonideal Crystals] (Kiev: Naukova Dumka: 1983) (in Russian).
  13. O. P. Karasevska, Metallofiz. Noveishie Tekhnol., 22, No. 11: 44 (2000) (in Russian).
  14. M. M. Myshlyaev and V. I. Betekhtin, Fiz. Met. Metalloved., 22, No. 1: 142 (1966) (in Russian).
  15. P. I. Loboda, Mater. Sci., 35, No. 4: 552 (1999). Crossref