Real Time Test in situ of Superalloy Oxide Scale Stress by Archimedes Curve Slice Moment Technique

Hai-tao Wang$^{1}$, Shao-mei Zheng$^{1}$, Hua-shun Yu$^{2}$

$^{1}$College of Mechanical Engineering, Qingdao University of Technology, 11 Fushun Road, 266033 Qingdao, China
$^{2}$Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, 17923 Jingshi Road, 250061 Jinan, China

Received: 06.06.2016. Download: PDF

Stress is the direct cause of surface oxide scale exfoliation to ruin the protection for alloy matrix. Therefore, it is the key to study oxide scale mechanical behaviour for discovering the oxidation resistance of alloys. In this paper, a new kind of experimental method ‘Archimedes curve slice moment technique’ is studied to test in situ the real time oxide scale stress of ferro-based superalloy K273 during all the high-temperature oxidation. By the derived formula, the oxide scale stress $\sigma$ can be calculated precisely only by observing Archimedes curve slice real-time polar radius OC$^{'}$. Having been oxidated for 5 hours at 800°C, the oxide scale stress versus oxidation time is regressed to follow parabola equation strictly. As the oxides grow and the inner new oxides form in scales to press each other, the oxide scale stress is generated. Analysed by SEM, EDS and XRD, the oxide scale is compact composite structure made up of Cr$_{2}$O$_{3}$ and spinel (Fe, Ni, Mn)Cr$_{2}$O$_{4}$. The less oxide scale stress increment brings about the lower oxidation weight gain rate and the better oxidation resistance. Improved by the use of vacuum system, the Archimedes curve slice moment technique is going to test the oxide scale growing and thermal stresses qualitatively and quantitatively in situ all the time at high temperature.

Key words: ferro-based superalloy, oxide scale stress, oxidation resistance, Archimedes curve.



PACS: 68.35.Gy, 68.47.Gh, 68.55.J-, 68.55.Nq, 68.60.Dv, 81.65.Kn, 81.65.Mq

Citation: Hai-tao Wang, Shao-mei Zheng, and Hua-shun Yu, Real Time Test in situ of Superalloy Oxide Scale Stress by Archimedes Curve Slice Moment Technique, Metallofiz. Noveishie Tekhnol., 38, No. 12: 1635—1654 (2016)

  1. H. J. Engell und F. K. Peter, Archiv für das Eisenhüttenwesen, 28: 567 (1957) (in German) Crossref
  2. K. Kendall, J. Phys. D: Appl. Phys., 4: 1186 (1971) Crossref
  3. M. Schutze, Mater. Sci. Technol., 4: 407 (1988) Crossref
  4. A. M. Huntz, J. L. Lebru, and A. Boumaza, Oxid. Metals, 33: 321 (1990) Crossref
  5. C. Juricic, H. Pinto, D.Cardinali, M. Klaus, Ch. Genzel, and A. R. Pyzalla, Oxid. Metals, 73: 115 (2010) Crossref
  6. J. L. Ruan, Y. M. Pei, and D. N. Fang, Acta Mechanica, 223: 2597 (2012) Crossref
  7. J. Birnie, C. Craggs, D. J. Gardiner, and P. R. Graves, Corrosion Sci., 33: 1 (1992) Crossref
  8. P. Y. Hou, J. Ager, J. Mougin, and A. Galerie, Oxid. Metals, 75: 229 (2011) Crossref
  9. F. Yang, X. F. Zhao, and P. Xiao, Oxid. Metals, 81: 331 (2014) Crossref
  10. Hai-tao Wang, Hua-shun Yu, Yu-qing Wang, Jing Zhang, Zhen-ya Zhang, and Zhi-fu Wang, Metallofiz. Noveishie Tekhnol., 31, No. 5: 701 (2009)
  11. Hai-tao Wang, Ji-wen Tan, Chang-song Liu, and Hua-shun Yu, Metallofiz. Noveishie Tekhnol., 33, No. 6: 757 (2011)
  12. G. Tammann, Z. Anorg. Chem., 111: 78 (1920)
  13. C. Wagner, Z. Physik. Chem., B21: 25 (1933)
  14. C. Wagner, Z. Physik. Chem., B32: 447 (1936)