Thermoactivation Analysis of the Flow-Stress–Temperature Dependence in the F.C.C. Solid Solutions

S. O. Firstov, T. G. Rogul

I.M. Frantsevich Institute for Problems of Materials Sciences, NAS of Ukraine, 3 Academician Krzhizhanovskoho Str., UA-03680 Kyiv-142, Ukraine

Received: 01.11.2016. Download: PDF

The results of thermal-activation analysis of the temperature dependence of the critical shear stress (or the corresponding yield strength) of some pure metals as well as binary and multicomponent solid solutions with the f.c.c. lattice are presented. As shown, the concentration increase of dissolved alloying element leads to both a sharper thermal dependence of critical shear stress component (or component of the corresponding thermal yield strength) on the temperature and an increase of the athermal component for binary and multicomponent solid solutions. The increase in the activation energy of the motion of dislocations and the reduction in the value of the activation volume for binary and multicomponent solid solutions in comparison with the pure metals can be determined by picodimensional distortions of crystal lattice, which are associated with differences in atomic radii of the elements contained in the alloy.

Key words: critical shear stress, yield stress, activation energy for dislocation motion, activation volume.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i01/0033.html

DOI: https://doi.org/10.15407/mfint.39.01.0033

PACS: 61.72.Hh, 62.20.F-, 62.40.+i, 65.40.De, 81.40.Cd, 81.40.Lm, 83.60.La

Citation: S. O. Firstov and T. G. Rogul, Thermoactivation Analysis of the Flow-Stress–Temperature Dependence in the F.C.C. Solid Solutions, Metallofiz. Noveishie Tekhnol., 39, No. 1: 33—48 (2017) (in Russian)


REFERENCES
  1. O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, and P. K. Liaw, Intermetallics, 18, No. 9: 1758 (2010). Crossref
  2. S. A. Firstov, T. G. Rogul, N. A. Krapivka, S. S. Ponomaryov, V. N. Tkach, V. V. Kovylyaev, V. F. Gorban, and M. V. Karpets, Deformatsiya i Razrushenie materialov, No. 2: 9 (2013) (in Russian).
  3. S. A. Firstov, T. G. Rogul, N. A. Krapivka, S. S. Ponomaryov, V. V. Kovylyaev, N. I. Danilenko, N. D. Bega, V. I. Danilenko, and S. I. Chugunova, Poroshkovaya Metallurgiya, Nos. 3/4 (508): 127 (2016) (in Russian).
  4. A. Seeger, Report of Dislocations and Mechanical Properties of Solids (Like Placid Conference, London, 1957) (New York: Wiley: 1957; London: Chapman and Hall: 1957), p. 268.
  5. A. Seeger, Kristallplastizität. Handbuch der Physik. Bd. 7/2 (Berlin: Springer-Verlag: 1958), S. 277.
  6. H. Conrad, Acta Met., 6, Iss. 5: 339 (1958). Crossref
  7. H. Conrad, Tekuchest i Plasticheskoe Techenie OTsK-Metallov pri Nizkikh Temperaturakh. Struktura i Mekhanicheskie Svoystva Metallov [Yield and Plastic Flow for B.C.C. Metals at Low Temperatures. Structure and Mechanical Properties of Metals] (Moscow: Metallurgiya: 1967), p. 225 (Russian translation).
  8. Yu. V. Mil'man and V. I. Trefilov, O Fizicheskoy Prirode Temperaturnoy Zavisimosti Predela Tekuchesti. Mekhanizm Razrusheniya Metallov [Physical Nature of the Temperature Dependence of Yield Stress. Metal Fracture Mechanism] (Kiev: Naukova Dumka: 1966), p. 59 (in Russian).
  9. V. I. Trefilov, Yu. V. Milman, and S. A. Firstov, Fizicheskie Osnovy Prochnosti Tugoplavkikh Metallov [Physical Foundations of the Strength of Refractory Metals] (Kiev: Naukova Dumka: 1975) (in Russian).
  10. P. Haasen, Acta Met., 5: 598 (1957). Crossref
  11. P. Haasen, Mekhanicheskie Svoystva Tverdykh Rastvorov i Intermetallicheskikh Soedineniy. Fizicheskoe Metallovedenie [Mechanical Properties of Solid Solutions and Intermetallic Compounds. Physical Metallurgy] (Eds. R. W. Cahn and P. Haasen] (Moscow: Metallurgiya: 1987), vol. 3, p. 187 (Russian translation).
  12. O. Boser, Metallurgical Transactions, 3, No. 4: 843 (1972). Crossref
  13. T. E. Mitchell, Progr. Appl. Mater. Res., No. 6: 117 (1964).
  14. W. D. Jenkins, T. G. Digges, and C. R. Johnson, Journal of Research of the National Bureau of Standards, 58, No. 4: 201 (1957). Crossref
  15. A. Gali and E. P. George, Intermetallics, 39: 74 (2013). Crossref
  16. K. L. Johnson, J. Mech. Phys. Solids, 18: 115 (1970). Crossref
  17. R. L. Fleischer, Acta Metall., 11: 203 (1963). Crossref
  18. N. F. Mott and F. R. N. Nabarro, Rep. Conf. on Strength of Solids (London: Physical Society: 1948), p. 1.