Processing math: 77%

Measurement of Critical Currents in Superconducting Thin YBa2Cu3O7δ Films by the Magnetic Susceptibility Method Using Open-Faced Coils

A. A. Kalenyuk1, G. G. Kaminskyi1, A. V. Semenov2, V. O. Moskaliuk1, V. S. Flis1

1G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine
2Institute of Physics, NAS of Ukraine, 46 Nauky Ave., 03028 Kyiv, Ukraine

Received: 03.03.2017. Download: PDF

The nonlinear magnetic susceptibility χ(Hac) and critical current Jc in thin YBa2Cu3O7δ films are measured using planar spiral open-faced pick-up coils. The real and imaginary parts of a generalized susceptibility ˜χ(a,h) are calculated within the framework of the critical state model for an arbitrary ratio a=r/R of the radius of a single-turn pick-up coil r to the superconducting thin-film disc radius R. Well known results of the Clem–Sanchez model in the limit a are reproduced for nonlinear complex magnetic susceptibility χ(h), where h(Jc(T), Hac) is reduced dimensionless field amplitude. Relative systematic error of measured Jc is shown to be negligible (< 2%) in a standard experimental geometry (with a sample within the pick-up coil of magnetometer) for a>2, but it is of about 25% at a1. On the other hand, for the open-faced coils with a<1, the nature of amplitude dependences of ˜χ(a, h) is changed qualitatively, turning to have threshold on h. That is why, at the fixed field amplitude Hac, not unique point of the Jc(T) dependence (at the maximum of χ(T, H_{\textrm{ac}})) but two points (at both the maximum and the threshold of \tilde{\chi}^{''}(T, H_{\textrm{ac}})–T dependence) can be obtained. This also simplifies the normalization procedure of the real and imaginary parts of generalized magnetic susceptibility.

Key words: critical current, critical temperature, magnetic susceptibility in an alternating field, critical state model, superconductor.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i04/0441.html

DOI: https://doi.org/10.15407/mfint.39.04.0441

PACS: 74.20.-z, 74.25.Ha, 74.25.Sv, 74.72.-h, 75.30.Cr, 81.15.Fg

Citation: A. A. Kalenyuk, G. G. Kaminskyi, A. V. Semenov, V. O. Moskaliuk, and V. S. Flis, Measurement of Critical Currents in Superconducting Thin YBa_{2}Cu_{3}O_{7-\delta} Films by the Magnetic Susceptibility Method Using Open-Faced Coils, Metallofiz. Noveishie Tekhnol., 39, No. 4: 441—455 (2017) (in Russian)


REFERENCES
  1. M. Wurlitzer, M. Lorenz, K. Zimmer, and P. Esquinazi, Phys. Rev. B, 55: 11816 (1997). Crossref
  2. Th. Herzog, H. A. Radovan, P. Ziemann, and E. H. Brandt, Phys. Rev. B, 56: 2871 (1997). Crossref
  3. E. Mezzetti, R. Gerbaldo, G. Ghigo, L. Gozzelino, B. Minetti, C. Camerlingo, A. Monaco, G. Cuttone, and A. Rovelli, Phys. Rev. B, 60: 7623 (1999). Crossref
  4. Yu. V. Fedotov, S. M. Ryabchenko, and A. P. Shakhov, Low Temperature Physics, 26: 464 (2000). Crossref
  5. E. A. Pashitskii, V. I. Vakaryuk, S. M. Ryabchenko, and Yu. V. Fedotov, Low Temperature Physics, 27: 96 (2001). Crossref
  6. Yu. V. Fedotov, S. M. Ryabchenko, E. A. Pashitskii, A. V. Semenov, V. I. Vakaryuk, V. S. Flis, and V. M. Pan, Physica C, 372–376: 1091 (2002). Crossref
  7. Yu. V. Fedotov, S. M. Ryabchenko, E. A. Pashitskii, A. V. Semenov, V. I. Vakaryuk, V. M. Pan, and V. S. Flis, Low Temperature Physics, 28: 172 (2002). Crossref
  8. V. M. Pan, Yu. V. Fedotov, S. M. Ryabchenko, E. A. Pashitskii, A. V. Semenov, V. I. Vakaryuk, V. S. Flis, and Yu. V. Cherpak, Physica C, 388–389: 431 (2003). Crossref
  9. Yu. V. Fedotov, E. A. Pashitskii, S. M. Ryabchenko, V. A. Komashko, V. M. Pan, V. S. Flis, and Yu. V. Cherpak, Low Temperature Physics, 29: 630 (2003). Crossref
  10. Y. V. Cherpak, V. A. Komashko, S. A. Pozigun, A. V. Semenov, C. G. Tretiatchenko, E. A. Pashitskii, and V. M. Pan, IEEE Transactions on Applied Superconductivity, 15: 2783 (2005). Crossref
  11. A. I. Kosse, A. Yu. Prokhorov, V. A. Khokhlov, G. E. Shatalova, N. E. Pis'menova, A. V. Semenov, M. P. Chernomorets, D. G. Kovalchuk, and G. G. Levchenko, Fizika i Tekhnika Vysokikh Davleniy, 15, No. 3: 131 (2005) (in Russian).
  12. V. M. Pan, Yu. V. Cherpak, A. V. Semenov, E. A. Pashitskii, V. A. Komashko, S. A. Pozigun, C. G. Tretiatchenko, and A. V. Pan, Phys. Rev. B, 73: 054508 (2006). Crossref
  13. A. I. Kosse, A. Yu. Prokhorov, V. A. Khokhlov, G. G. Levchenko, A. V. Semenov, D. G. Kovalchuk, M. P. Chernomorets, and P. N. Mikheenko, Supercond. Sci. Technol., 21: 075015 (2008). Crossref
  14. J. J. Akerman and K. V. Rao, Phys. Rev. B, 65: 134525 (2002). Crossref
  15. D.-X. Chen, E. Pardo, A. Sanchez, S.-S. Wang, Z.-H. Han, E. Bartolome, T. Puig, and X. Obradors, Phys. Rev. B, 72: 052504 (2005). Crossref
  16. M. P. Chernomorets, D. G. Kovalchuk, S. M. Ryabchenko, and A. V. Semenov, Low Temperature Physics, 32: 205 (2006). Crossref
  17. M. P. Chernomorets, D. G. Kovalchuk, S. M. Ryabchenko, A. V. Semenov, and E. A. Pashitskii, Low Temperature Physics, 32: 832 (2006). Crossref
  18. D. G. Kovalchuk, M. P. Chernomorets, S. M. Ryabchenko, E. A. Pashitskii, and A. V. Semenov, Low Temperature Physics, 36: 81 (2010). Crossref
  19. M. P. Chernomorets and D. G. Kovalchuk, Low Temperature Physics, 39: 1008 (2013). Crossref
  20. C. P. Bean, Rev. Mod. Phys., 36: 31 (1964). Crossref
  21. P. N. Mikheenko and Yu. E. Kuzovlev, Physica C, 204: 229 (1993). Crossref
  22. J. Zhu, J. Mester, J. Lockhart, and J. Turneaure, Physica C, 212: 216 (1993). Crossref
  23. J. R. Clem and A. Sanchez, Phys. Rev. B, 50: 9355 (1994). Crossref
  24. E. H. Brandt, Phys. Rev. B, 55: 14513 (1997). Crossref
  25. D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, Phys. Rev. B, 61: 9699 (2000). Crossref
  26. S. G. Gevorgyan, T. Kiss, T. Oyama, M. Inoue, A. A. Movsisyan, H. G. Shirinyan, V. S. Gevorgyan, T. Matsushita, and M. Takeo, Supercond. Sci. Technol., 14: 1009 (2001). Crossref