Segregation Refinement of the Grain Structure of Aluminium and Its Alloys

E. V. Lutsenko$^{1}$, V. A. Kreshchenko$^{2}$, M. D. Rud’$^{3}$, O. V. Sobol’$^{4}$, M. A. Glushchenko$^{4}$, A. I. Zubkov$^{4}$

$^{1}$National Science Center Kharkov Institute of Physics and Technology, NAS of Ukraine, 1, Akademicheskaya Str., 61108 Kharkov, Ukraine
$^{2}$State Enterprise Zorya-Mashproekt Gas Turbine Research and Development Complex, 42A Bogoyavlenskiy Ave., 54018 Mykolaiv, Ukraine
$^{3}$Motor Sich JSC, 15 Motorostroiteley Ave., 69068 Zaporizhzhya, Ukraine
$^{4}$National Technical University ‘Kharkiv Polytechnic Institute’, 21 Kyrpychov Str., 61002 Kharkiv, Ukraine

Received: 08.02.2017; final version - 16.03.2017. Download: PDF

The structure of condensates and cast samples of aluminium, Al–Fe and Al–Zr alloys crystallized from both the melt and the vapour phase in a vacuum is studied. As shown, the alloying of the vapour flow of a matrix metal, i.e. aluminium, with iron up to $\cong$ 3 at.% reduces the grain size of condensates from 2 $\mu$m to 50 nm. The dispersing effect of iron and zirconium on the grain structure of aluminium is demonstrated on the castings of this metal, where a decrease in the grain size is observed by more than one order of magnitude. Refinement of the grain structure of aluminium is explained by the formation of the grain-boundary segregation by atoms of alloying elements during crystallization from both the vapour and the melt.

Key words: condensation, crystallization, segregation, grain size, aluminium.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i05/0607.html

DOI: https://doi.org/10.15407/mfint.39.05.0607

PACS: 61.66.Dk, 64.75.Op, 68.35.Fx, 68.55.Ln, 81.05.Ni, 81.10.Fq, 81.15.Kk

Citation: E. V. Lutsenko, V. A. Kreshchenko, M. D. Rud’, O. V. Sobol’, M. A. Glushchenko, and A. I. Zubkov, Segregation Refinement of the Grain Structure of Aluminium and Its Alloys, Metallofiz. Noveishie Tekhnol., 39, No. 5: 607—620 (2017) (in Russian)


REFERENCES
  1. N. A. Azarenkov, O. V. Sobol', V. M. Beresnev, A. D. Pogrebnyak, D. A. Kolesnikov, P. V. Turbin, and I. N. Toryanik, Metallofiz. Noveishie Tekhnol., 35, No. 8: 1061 (2013) (in Russian).
  2. V. I. Ivashchenko, S. N. Dub, P. L. Scrynskii, A. D. Pogrebnjak, O. V. Sobol', G. N. Tolmacheva, V. M. Rogoz, and A. K. Sinel'chenko, J. Superhard Mater., 38, No. 2: 103 (2016). Crossref
  3. E. E. Glikman and R. E. Bruver, Metallofizika, 43: 42 (1973) (in Russian).
  4. S. A. Firstov and Yu. F. Lugovskoy, Elektronnaya Mikroskopiya i Prochnost' Materialov. Ser.: Fizicheskoe Materialovedenie, Struktura i Svoystva Materialov, 15: 83 (2008) (in Russian).
  5. J. W. Gibbs, Collected Works (New Haven: Yale University Press: 1948), vol. 1, p. 219.
  6. I. Langmuir, I. Am. Chem. Soc., 38: 222 (1916).
  7. D. McLean, Grain Boundaries in Metals (New York: Oxford Univ. Press: 1957).
  8. M. P. Seah, Acta Metall. Mater., 28, No. 7: 955 (1980). Crossref
  9. K. E. Kniplinga, D. C. Dunand, and D. N. Seidman, Acta Mater., 56, No. 6: 1182 (2008). Crossref
  10. P. Zhang, J. Y. Zhang, J. Li, G. Liu, K. Wu, Y. Q. Wang, and J. Sun, Acta Mater., 76: 221 (2014). Crossref
  11. A. Inoue, F. L. Kong, S. L. Zhu, C. T. Liu, and F. Al-Marzouki, Mat. Res., 18, No. 6: 1414 (2015). Crossref
  12. Alyuminiy: Svoystva i Fizicheskoe Metallovedenie: Spravochnik [Aluminium: Properties and Physical Metallurgy: Handbook] (Ed. J. E. Hatch) (Moscow: Metallurgiya: 1989) (in Russian).
  13. Ya. E. Goldshtein and V. G. Mizin, Inokulirovanie Zhelezouglerodistykh Splavov [Inoculation of Iron–Carbon Alloys] (Moscow: Metallurgiya: 1993) (in Russian).
  14. M. T. Thomas, D. R. Baer, R. H. Jones, and S. M. Bruemmer, J. Vac. Sci. Technol., 17, No. 1: 22 (1980). Crossref
  15. H. J. Grabke, Steel Res., 57, No. 4: 178 (1986). Crossref
  16. M. P. Seah and E. D. Hondros, Proc. Roy. Soc., A335: 191 (1973). Crossref
  17. S. S. Nayaka, M. Wollgartenb, J. Banhartb, S. K. Pabia, and B. S. Murtyc, Mater. Sci. Eng. A, 527: 2370 (2010). Crossref
  18. B. D. Saller, T. Hu, K. Ma, L. Kurmanaeva, E. J. Lavernia, and J. M. Schoenung, J. Mater. Sci., 50, No. 13: 4683 (2015). Crossref
  19. M. F. Francis, M. N. Neurock, X. W. Zhou, J. J. Quan, H. N. G. Wadley, and E. B. Webb, J. Appl. Phys., 104: 034310 (2008). Crossref
  20. J. R. Trelewicz and C. A. Schuh, Phys. Rev. B, 79, No. 9: 094112 (2009). Crossref
  21. N. Q. Vo, J. Schäfer, R. S. Averback, K. Albe, Y. Ashkenazy, and P. Bellon, Scr. Mater., 65, No. 8: 660 (2011). Crossref
  22. A. Ye. Barmin, O. V. Sobol', A. I. Zubkov, and L. A. Mal'tseva, Phys. Metal. Metalogr., 116, No. 7: 706 (2015). Crossref
  23. E. V. Lutsenko, O. V. Sobol', and A. I. Zubkov, Zhurnal Nano- i Elektronnoy Fiziki, 7, No. 3: 03042 (2015) (in Russian).
  24. Ya. S. Umanskiy, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Kristallografiya, Rentgenografiya i Elektronnaya Mikroskopiya [Crystallography, Radiography and Electron Microscopy] (Moscow: Metallurgiya: 1982) (in Russian).
  25. N. I. Noskova and R. R. Mulyukov, Submikrokristallicheskie i Nanokristallicheskie Metally i Splavy [Submicrocrystalline and Nanocrystalline Metals and Alloys] (Yekaterinburg: UB RAS: 2003) (in Russian).
  26. R. Z. Valiev and I. V. Aleksandrov, Nanostrukturnye Materialy, Poluchennye Intensivnoy Plasticheskoy Deformatsiey [Nanostructured Materials Obtained by Severe Plastic Deformation] (Moscow: Logos: 2000) (in Russian).
  27. H. Brune, Physics of Covered Solid Surfaces (Ed. H. P. Bonzel), vol. III/42, subvol. A, pt. 1 of Landolt Börnstein New Series, Group III: Condensed Matter (Berlin: Springer: 2001), p. 217.
  28. E. Zenguil, Fizika Poverkhnosti [Surface Physics] (Moscow: Mir: 1990) (in Russian).
  29. V. K. Semenchenko, Poverkhnostnye Yavleniya v Metallakh i Splavakh [Surface Phenomena in Metals and Alloys] (Moscow: Gos. Izd. Tekhniko-Teoret. Lit.: 1957) (in Russian).