Mössbauer and Ultrasonic Study of the As-Cast High-Entropy Al$_x$CuCrCoNiFe Alloys

V. M. Nadutov, O. I. Zaporozhets, S. Yu. Makarenko, M. O. Dordienko, V. A. Mikhaylovsky

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 23.09.2016. Download: PDF

Determination of the hyperfine-interaction parameters, acoustic and elastic properties of the high-entropy Al$_{x}$CuCrCoNiFe alloys (HEAs) ($x$ = 1, 1.8) in the as-cast state is carried out with the use of Mössbauer spectroscopy, x-ray diffractometry and high-precision ultrasonic techniques. Wide distributions of both the hyperfine-magnetic fields on iron nuclei (5.0–36.3 T) and the isomer shifts (-0.15–+0.28 mm/s) are detected in the HEAs that is result of multiphase state and inhomogeneous short-range order in the phases. As shown, the as-cast Al$_{x}$CuCrCoNiFe HEAs are acoustically and elastically inhomogeneous systems. Mean elastic moduli of the as-cast equimolar HEAs ($\langle E\rangle$ = 172.8 GPa, $\langle G\rangle$ = 65.3 GPa, $\langle B\rangle$ = 161.8 GPa) and the Debye temperature ($\langle\Theta_{D}\rangle$ = 436 K) exceed ones for the elemental metals composing HEAs. There are the Poisson’s ratio $\langle\eta\rangle$ = 0.312–0.322 and the ratio $\langle B\rangle$/$\langle G\rangle$ = 2.321–2.477. Deviation from equimolar content of Al ($x$ = 1.8) results in redistribution of the spin and charge s-electron densities near iron nuclei, increases the elastic moduli and the Debye temperature by approximately 4–5%.

Key words: high-entropy alloys, ultrasonics, elastic properties, elastic anisotropy, Mössbauer effect.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i05/0621.html

DOI: https://doi.org/10.15407/mfint.39.05.0621

PACS: 61.05.Qr, 61.66.Dk, 62.20.de, 65.40.gd, 76.80.+y, 81.05.Bx

Citation: V. M. Nadutov, O. I. Zaporozhets, S. Yu. Makarenko, M. O. Dordienko, and V. A. Mikhaylovsky, Mössbauer and Ultrasonic Study of the As-Cast High-Entropy Al$_x$CuCrCoNiFe Alloys, Metallofiz. Noveishie Tekhnol., 39, No. 5: 621—632 (2017)

  1. S. Ranganathan, Curr. Sci., 85, Iss. 5: 1404 (2003).
  2. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mater., 6, Iss. 5: 299 (2004). Crossref
  3. Ch.-Ch. Tung, J.-W. Yeh, T.-T. Shun, S.-K. Chen, Yu.-Sh. Huang, and H.-Ch. Chen, Mater. Lett., 61, Iss. 1: 1(2007). Crossref
  4. C.-J. Tong, Y.-L. Chen, S.-K. Chen, J.-W. Yeh, T.-T. Shun, C.-H. Tsau, S.-J. Lin, and S.-Y. Chang, Metall. Mater. Trans. A, 36: 881 (2005). Crossref
  5. S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Acta Mater., 59, Iss. 1: 182 (2011). Crossref
  6. M. V. Ivchenko, V. G. Pushyn, and N. Wanderka, J. Tech. Phys., 84: 57 (2014).
  7. M. V. Ivchenko, V. G. Pushyn, A. N. Uksusnikova, N. Wanderka, and N. I. Kourov, Phys. Metals Metallogr., 114, Iss. 6: 514 (2013). Crossref
  8. O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, Intermetallics, 19, Iss. 5: 698 (2011). Crossref
  9. H.-P. Chou, Y.-S. Chang, S.-K. Chen, and J.-W. Yeh, Mater. Sci. Eng. B, 163, Iss. 3: 184 (2009). Crossref
  10. Y.-F. Kao, S.-K. Chen, T.-J. Chen, P.-C. Chu, J.-W. Yeh, and S.-J. Lin, J. Alloys Compd., 509, Iss. 5: 1607 (2011). Crossref
  11. W. H. Liu, Y. Wu, J. Y. He, T. G. Nieh, and Z. P. Lu, Scr. Mater., 68, Iss. 7: 526 (2013). Crossref
  12. S. A. Firstov, V. F. Gorban, N. A. Krapivka, E. P. Pechkovsky, N. I. Danilenko, and M. V. Karpets, Modern Problems of Physical Materials Science, 17: 126 (2008) (in Russian).
  13. M.-H. Tsai, C.-W. Wang, C.-W. Tsai, W.-J. Shen, J.-W. Yeh, J.-Y. Gan, and W.-W. Wu, J. Electrochem. Soc., 158, Iss. 11: 1161 (2011). Crossref
  14. C.-J. Tong, Y.-L. Chen, S.-K. Chen, J.-W. Yeh, T.-T. Shun, C.-H. Tsau, S.-J. Lin, and S.-Y. Chang, Metall. and Mat. Trans. A, 36, Iss. 5: 1263 (2005). Crossref
  15. K.-Y. Tsai, M.-H. Tsai, J.-W. Yeh, and C.-C. Yang, J. Alloys Compd., 490, Iss. 1–2: 160 (2010). Crossref
  16. A. V. Kuznetsov, G. A. Salishchev, O. N. Senkov, N. D. Stepanov, and D. G. Shaysultanov, Nauch. Vedom. Belgorod. Gosud. Univers. Ser.: Matemat., Fiz., 27, Iss. 11 (130): 191 (2012) (in Russian).
  17. J.-M. Wu, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, WEAR, 261, Iss. 5–6: 513 (2006). Crossref
  18. S. A. Firstov, S. T. Mileyko, V. F. Gorban, N. A. Krapivka, and E. P. Pechkovsky, Compos. i Nanostr., 6, Iss. 6: 3 (2014) (in Russian).
  19. A. Haglund, M. Koehler, D. Catoor, E.P. George, and V. Keppens, Intermetallics, 58: 62 (2015). Crossref
  20. S. G. Ma, P. K. Liaw, M. C. Gao, J. W. Qiao, Z. H. Wang, and Y. Zhang, J. Alloys Compd., 604: 331 (2014). Crossref
  21. V. M. Nadutov, S. Yu. Makarenko, and Ye. O. Svystunov, Metallofiz. Noveishie Tekhnol., 37, No. 7: 987 (2015). Crossref
  22. V. M. Nadutov, A. V. Proshak, S. Y. Makarenko, V. Y. Panarin, and M. Y. Svavil'nyj, Mater. Sci. Eng. Technol., 47, Iss. 2–3: 272 (2016). Crossref
  23. A. S. Osipov, S. Nauyoks, T. W. Zebra, and O. I. Zaporozhets, Diamond and Relat. Mater., 18, Iss. 9: 1061 (2009). Crossref
  24. O. I. Zaporozhets, S. A. Kotrechko, N. A. Dordienko, V. A. Mykhailovsky, and A. V. Zatsarnaya, Problems of Atomic Science and Technology, 2 (96): 197 (2015).
  25. S. F. Pugh, Philos. Magazine, 45, Iss. 367: 823 (1954). Crossref
  26. V. M. Nadutov, S. G. Kosintsev, Ye. O. Svystunov, V. A. Tatarenko, and T. V. Efimova, Metallofiz. Noveishie Tekhnol., 28, Special Issue: 39 (2006).
  27. V. M. Nadutov, S. Yu. Makarenko, P. Yu. Volosevych, and V. P. Zalutskii, Metallofiz. Noveishie Tekhnol., 36, No. 10: 1327 (2014). Crossref
  28. V. M. Nadutov, S. Yu. Makarenko, and P. Yu. Volosevich, Phys. Metals Metallogr., 116, Iss. 5: 439 (2015). Crossref
  29. W. P. Mason, Physical Acoustics, Principles and Methods (New York–London: Academic Press: 1966).
  30. I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta, Uprugie Postoyannye i Moduli Uprugosti Metallov i Nemetallov (Kiev: Naukova Dumka: 1982) (in Russian).