Vacancy Formation Energy for the Charged and Neutral States of TlGaSe$_{2}$ Crystal

N. A. Ismayilova$^{1}$, G. S. Orudzhev$^{1,2}$

$^{1}$Institute of Physics ANAS, 131 G. Javid Ave., AZ-1143, Baku, Republic of Azerbaijan
$^{2}$Azerbaijan Technical University, 25 G. Javid Ave., AZ-1073 Baku, Republic of Azerbaijan

Received: 03.03.2017; final version - 25.04.2017. Download: PDF

Electronic band structure and defect formation energy of TlGaSe$_{2}$ are studied using density functional method within the Local Density Approximation. Calculated band structure shows that the top of valence band and the bottom of conduction band locate at the symmetry point $\Gamma$ and along the symmetry line $\Gamma$–Y, respectively. The defect formation energy is calculated as the difference between the total energy of a stable structure and the relaxed defect structure at constant volume. Calculation is done for the five charge states: +2, +1, 0, -1, -2. Energies of vacancies’ ($V_{\textrm{Tl}}$, $V_{\textrm{Ga}}$, $V_{\textrm{Se}}$) formation are determined for the TlGaSe$_{2}$ crystal consisting of 63 atoms for the various charge states as a function of Fermi energy. The calculated optical properties indicate that the optical energy gap is increased due to the Se and Tl vacancies.

Key words: density functional theory, local density approximation, charged vacancy, defect formation energy, Fermi level.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i05/0657.html

DOI: https://doi.org/10.15407/mfint.39.05.0657

PACS: 61.72.jd, 71.15.Ap, 71.15.Mb, 71.15.Nc, 71.20.Nr, 74.62.Dh

Citation: N. A. Ismayilova and G. S. Orudzhev, Vacancy Formation Energy for the Charged and Neutral States of TlGaSe$_{2}$ Crystal, Metallofiz. Noveishie Tekhnol., 39, No. 5: 657—664 (2017)


REFERENCES
  1. D. Muller, F. E. Poltman, and H. Z. Hahn, Z. Natuforsch., 29: 117 (1974).
  2. D. Muller and H. Z. Hahn, Anorg. Allg. Chem., 438: 258 (1978).
  3. K. R. Allakhverdiyev, T. G. Mamedov, B. G. Akinoglu, and Sh. S. Ellialtioglu, Turk. J. Phys., 18, No. 1: 1 (1994).
  4. W. Henkel, H. D. Hochheimer, C. L. Carlone, A. Werner, S. Ves, and H. G. V. Schnering, Phys. Rev. B, 26: 3211 (1982). Crossref
  5. K. A. Yee and T. A. Albright, J. Am. Chem. Soc., 113: 6474 (1991). Crossref
  6. N. M. Gasanly, J. Korean Physical Society, 57, No. 1: 164 (2010). Crossref
  7. E. Senturk, L. Tumbek, and F. A. Mikailov, Cryst. Res. Technol., 40: 901 (2005). Crossref
  8. M-H. Yu. Seyidov, E. Coskun, Y. Sahin, R. Khamoev, and R. A. Suleymanov, Semicond. Sci. Technol., 21: 171 (2006). Crossref
  9. N. S. Yuksek, H. Kavas, N. M. Gasanly, and H. Ozkan, Physica B, 344: 249 (2004). Crossref
  10. A. F. Qasrawi and N. M. Gasanly, Mater. Res. Bull., 39: 1353 (2004). Crossref
  11. F. A. Mikailov, B. Z. Rameev, S. Kazan, F. Yildiz, T. G. Mammadov, and B. Aktas, Solid State Commun., 133: 389 (2005). Crossref
  12. V. Grivickas, V. Gavryushin, P. Grivickas, A. Galeckas, V. Bikbajevas, and K. Gulbinas, phys. status solidi (a), 208, No. 9: 2186 (2011). Crossref
  13. O. A. Kozlova, V. V. Lyskouski, and V. V. Nelayev, Mater. Phys. Mechanics, 13: 124 (2012).
  14. http://quantumwise.com
  15. W. Kohn and L. Sham, Phys. Rev., 140: A1133 (1965). Crossref
  16. M. A. Nizametdinova, F. M. Hashimzade, D. A. Huseinova, G. S. Orudzhev, and K. R. Allakhverdiyev, Moldavian J. Physical Sciences, 9: 350 (2010).
  17. S. H. Jabarov, T. G. Mammadov, A. I. Mammadov, S. E. Kichanov, V. B. Alieva, and E. V. Lukin, J. Synch. Investig., 9, No. 1: 35 (2015). Crossref
  18. G. Abdullaeva, N. T. Mamedov, and G. S. Orudzhev, phys. status solidi (b), 119: 41 (1983). Crossref
  19. S. G. Abdullaeva and N. T. Mamedov, phys. status solidi (b), 133: 171 (1986). Crossref
  20. K. A. Yee and T. A. Albright, J. Am. Chem. Soc., 113: 6474 (1991). Crossref
  21. S. Kashida, Y. Yanadori, Y. Otaki, Y. Seki, and A. M. Panich, phys. status solidi (a), 203: 2666 (2006). Crossref
  22. A. Janotti and C. G Van de Walle, Rep. Prog. Phys., 72: 126501 (2009). Crossref