Supercooling During a Crystallization of Thin Layers of the Bi + 7% wt. Sn Alloy Being Contact to Crystalline Copper

S. V. Dukarov$^{1}$, S. I. Petrushenko$^{1}$, V. M. Sukhov$^{1}$, R. I. Bihun$^{2}$, Z. V. Stasyuk$^{2}$, D. S. Leonov$^{3}$

$^{1}$V.N. Karazin Kharkiv National University, 4 Svobody Sqr., 61022 Kharkiv, Ukraine
$^{2}$Ivan Franko National University of Lviv, 1 Universytetska Str., UA-79000 Lviv, Ukraine
$^{3}$Technical Centre, NAS of Ukraine, 13 Pokrovs’ka Str., 04070 Kyiv, Ukraine

Received: 15.07.2017. Download: PDF

The results of studies of supercooling of the Bi + 7% wt. Sn alloy in multi-layer Cu/Bi/Sn films are presented. The crystallization temperature is determined by direct $in situ$ electron diffraction methods during heating and cooling of the samples. Effects of the distinctions in conditions of samples’ fabrication on both the temperature of supercooling of a low-melting alloy and the pattern of its crystallization are revealed. Annealing of Cu/Bi films at 300°C for 5 minutes, performed before the deposition of the tin layer, increases the supercooling value from 65 K to 140 K. Additionally, because of intermediate annealing, crystallization becomes diffusive instead of avalanche-like one, and crystallization period stretches to a 20 K interval. This is due to the dispersion of the pre-annealed samples that occurs in the first heating cycle of Cu/(Bi + 7% wt. Sn) films.

Key words: supercooling of alloys, multilayer films, condensation conditions, thermal effect.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i08/1069.html

DOI: https://doi.org/10.15407/mfint.39.08.1069

PACS: 64.70.D-, 64.70.kd, 68.35.Dv, 68.37.-d, 68.55.J-, 73.61.At, 81.15.Ef, 81.40.Ef

Citation: S. V. Dukarov, S. I. Petrushenko, V. M. Sukhov, R. I. Bihun, Z. V. Stasyuk, and D. S. Leonov, Supercooling During a Crystallization of Thin Layers of the Bi + 7% wt. Sn Alloy Being Contact to Crystalline Copper, Metallofiz. Noveishie Tekhnol., 39, No. 8: 1069—1086 (2017) (in Russian)


REFERENCES
  1. R. I. Bihun, Z. V. Stasyuk, O. V. Stroganov, V. M. Gavrylyukh, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 13, No. 3: 459 (2015) (in Ukrainian).
  2. R. I. Bigun, V. M. Gavrylyukh, Z. V. Stasyuk, and D. S. Leonov, Metallofiz. Noveishie Tekhnol., 38, No. 3: 329 (2016) (in Ukrainian). Crossref
  3. R. I. Bihun, Z. V. Stasyuk, and O. A. Balitskii, Physica B: Condensed Matter, 487: 73 (2016). Crossref
  4. L. Hu, W. L. Wang, S. J. Yang, L. H. Li, D. L. Geng, L. Wang, and B. Wei, J. Appl. Phys., 121, No. 8: 085901 (2017). Crossref
  5. J. Chang, H. P. Wang, K. Zhou, and B. Wei, Appl. Phys. A, 109, No. 1: 139 (2012). Crossref
  6. N. T. Gladkikh, S. V. Dukarov and V. N. Sukhov, Fiz. Met. Metalloved., 78, No. 3: 87 (1994) (in Russian).
  7. S. I. Bogatyrenko, A. V. Voznyy, N. T. Gladkikh, and A. P. Kryshtal, Fiz. Met. Metalloved., 97, No. 3: 54 (2004) (in Russian).
  8. V. Neimash, V. Poroshin, P. Shepeliavyi, V. Yukhymchuk, V. Melnyk, A. Kuzmich, V. Makara, and A. O. Goushcha, J. Appl. Phys., 114, No. 21: 213104 (2013). Crossref
  9. A. P. Kryshtal, A. A. Minenkov, and P. J. Ferreira, Appl. Surf. Sci., 409: 343 (2017). Crossref
  10. V. Neimash, P. Shepelyavyi, G. Dovbeshko, A. O. Goushcha, M. Isaiev, V. Melnyk, O. Didukh, and A. Kuzmich, Journal of Nanomaterials, 2016: 7920238 (2016). Crossref
  11. S. I. Petrushenko, S. V. Dukarov, and V. N. Sukhov, Voprosy Atomnoy Nauki i Tekhniki, 104, No. 4: 118 (2016) (in Russian).
  12. N. T. Gladkikh, S. V. Dukarov, A. P. Kryshtal and V. I. Larin, Fiz. Met. Metalloved., 85, No. 5: 51 (1998) (in Russian).
  13. S. V. Dukarov, Thin Solid Films, 323, Nos. 1–2: 136 (1998). Crossref
  14. N. T. Gladkikh, S. V. Dukarov, V. N. Sukhov, and I. G. Churilov, Functional Materials, 18, No. 4: 529 (2011).
  15. M. M. Kolendovskii, S. I. Bogatyrenko, A. P. Kryshtal, and N. T. Gladkikh, Technical Physics, 57, No. 6: 849 (2012). Crossref
  16. S. I. Petrushenko, S. V. Dukarov, and V. N. Sukhov, Journal of Nano- and Electronic Physics, 8, No. 4: 04073 (2016). Crossref
  17. S. I. Petrushenko, S. V. Dukarov, and V. N. Sukhov, Vacuum, 122: 208 (2015). Crossref
  18. P. Y. Khan and K. Biswas, Journal of Nanoscience and Nanotechnology, 15, No. 1: 309 (2015). Crossref
  19. M. Peterlechner, A. Moros, H. Rösner, S. Lazar, P. Ericus, and G. Wilde, Acta Mater., 128: 284 (2017). Crossref
  20. S. Bhatt and M. Kumar, J. Phys. Chem. Solids, 106: 112 (2017). Crossref
  21. S. Chaubey, Indian Journal of Engineering and Materials Sciences, 15, No. 3: 241 (2008).
  22. M. J. Castro, R. Serna, J. Toudert, J. F. Navarro, and E. Haro-Poniatowski, Ceramics International, 41, No. 6: 8216 (2015). Crossref
  23. E. Johnson, H. H. Andersen, and U. Dahmen, Microsc. Res. Tech., 64: 356 (2004). Crossref
  24. V. Bhattacharya and K. Chattopadhyay, Mater. Sci. Eng. A, 375–377: 932 (2004). Crossref
  25. P. Y. Khan, M. M. Devi, and K. Biswas, Metall. Mater. Trans. A, 46, No. 8: 3365 (2015). Crossref
  26. J. H. Lee, D. Y. Kim, and Y. W. Kim, Journal of the European Ceramic Society, 26, No. 7: 1267 (2006). Crossref
  27. O. Nast and A. J. Hartmann, J. Appl. Phys., 88, No. 2: 716 (2000). Crossref
  28. V. B. Neimash, A. O. Goushcha, P. E. Shepeliavyi, V. O. Yukhymchuk, V. A. Dan'ko, V. V. Melnyk, and A. G. Kuzmich, Ukr. J. Phys., 59, No. 12: 1168 (2014). Crossref
  29. C.-F. Han, G.-S. Hu, T.-C. Li, and J. F. Lin, Thin Solid Films, 599: 151 (2016). Crossref
  30. S. B. Luo, W. L. Wang, J. Chang, Z. C. Xia, and B. Wei, Acta Mater., 69: 355 (2014). Crossref
  31. A. P. Kryshtal, A. A. Minenkov, and S. S. Dzhus, Journal of Nano- and Electronic Physics, 7, No. 1: 01024 (2015) (in Russian).
  32. S. I. Petrushenko, S. V. Dukarov, V. N. Sukhov, and I. G. Churilov, Journal of Nano- and Electronic Physics, 7, No. 2: 02033-1 (2015) (in Russian).
  33. S. I. Petrushenko, S. V. Dukarov, and V. N. Sukhov, Vacuum, 142: 29 (2017). Crossref
  34. S. I. Petrushenko, S. V. Dukarov, and V. N. Sukhov, Metallofiz. Noveishie Tekhnol., 38, No. 10: 1351 (2016) (in Russian). Crossref
  35. S. V. Dukarov, S. I. Petrushenko, V. N. Sukhov, and O. I. Skryl, Functional Materials, 23, No. 2: 218 (2016). Crossref
  36. A. A. Minenkov, S. I. Bogatyrenko, and A. P. Kryshtal, Journal of Nano- and Electronic Physics, 6, No. 4: 04026 (2014) (in Russian).
  37. A. P. Kryshtal, S. I. Bogatyrenko, R. V. Sukhov, and A. A. Minenkov, Appl. Phys. A, 116, No. 4: 1891 (2014). Crossref
  38. V. O. Yukhymchuk, O. M. Hreshchuk, M. Ya. Valakh, M. A. Skoryk, V. S. Efanov, and N. A. Matveevskaya, Semiconductor Physics, Quantum Electronics & Optoelectronics, 17, No. 3: 217 (2014). Crossref
  39. H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, and P. Fischer, Nature Communications, 7: 11331 (2016). Crossref
  40. J. Chen, H. Che, K. Huang, C. Liu, and W. Shi, Appl. Catalysis B: Environmental, 192, No. 5: 134 (2016). Crossref
  41. A. A. Minenkov, S. I. Bogatyrenko, R. V. Sukhov, and A. P. Kryshtal, Phys. Solid State, 56, No. 4: 823 (2014). Crossref
  42. S. I. Bogatyrenko, N. T. Gladkikh, A. P. Kryshtal, A. L. Samsonik, and V. N. Sukhov, Phys. Met. Metallogr., 109, No. 3: 255 (2010). Crossref