Metallographic and Mechanical Studies of a Cast Heat-Resisting Alloy

M. Aichaoui, A. Hadji

Badji Mokhtar University, 23000 Annaba, Algeria

Received: 21.06.2017. Download: PDF

A heat-resistant steel tube from an ammonia plant made of modified HP40 steel that failed after short-term service is studied for damage mechanism. The assessment of material degradation is carried out using optical microscopy, scanning electron microscopy in combination with energy dispersive spectroscopy analysis, x-ray diffraction analysis, and mechanical tests. Results show that precipitation of the chromium-rich carbides induces the coalescence of grain boundaries. Significant growth and poor distribution of secondary carbides are also noticed through the matrix, which lead to a reduction of material ductility even after a short-term service. The main cause of failure appears to be damaged catalyst. Such a problem can cause a rise in temperature leading to localized overheating in the lower part of the tube. Overheating is primarily responsible for significant degradation in microstructure, creep strength, and mechanical properties of the tube.

Key words: heat-resistant steel, carbide, damage mechanism, overheating, creep.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i08/1119.html

DOI: https://doi.org/10.15407/mfint.39.08.1119

PACS: 62.20.Hg, 62.20.M-, 64.75.Op, 81.30.Mh, 81.40.Cd, 81.40.Lm, 81.40.Np

Citation: M. Aichaoui and A. Hadji, Metallographic and Mechanical Studies of a Cast Heat-Resisting Alloy, Metallofiz. Noveishie Tekhnol., 39, No. 8: 1119—1128 (2017)


REFERENCES
  1. C. E. Jaske, The Annual Conference 'CORROSION 2005' (April 3–7, 2005, Houston) (Houston: 2005), p. 05419.
  2. Standard Specification for Castings, Austenitic, for Pressure-Containing Parts, No. A351/A351M-91.
  3. X. Q. Wu, H. M. Jing, Y. G. Zheng, Z. M. Yao, W. Ke, and Z. Q. Hu, Mater. Sci. Eng. A, 293, Iss. 1–2: 252 (2000). Crossref
  4. J. Rodriguez, S. Haro, A. Velasco, and R. Colas, Material Characterization, 45: 25 (2000). Crossref
  5. T. Thorvaldsson and G. L. Dunlop, Metal Science, 16: 184 (1982). Crossref
  6. G. D. Barbabela, L. H. de Almeida, T. L. da Silveira, and I. Le May, Material Characterization, 26: 193 (1991). Crossref
  7. J. Swaminathan, K. Guguloth, M. Gunjan, P. Ray, and R. Ghosh, Engineering Failure Analysis, 15: 311 (2008). Crossref
  8. L. Bonaccorsi, E. Guglielmino, R. Pino, C. Servetto, and A. Sili, Engineering Failure Analysis, 36: 65 (2014). Crossref
  9. W. Z. Wang, F. Z. Xuan, Z. D. Wang, B. Wang, and C. J. Liu, Materials and Design, 32: 4010 (2011). Crossref
  10. A. U. Hamid, H. M. Tawancy, A. I. Mohammed, and N. M. Abbas, Engineering Failure Analysis, 13: 1005 (2006). Crossref
  11. K. Guan, H. Xu, and Zh. Wang, Engineering Failure Analysis, 12: 420 (2005). Crossref
  12. T. L. da Silveira and I. Le May, Arabian Journal for Science and Engineering, 31, No. 2C: 99 (2006).
  13. Azmi Abdul Wahab and K. V. Milo, Mater. Sci. Eng. A, 412, Iss. 1–2: 222 (2005). Crossref
  14. G. D. A. Soares, L. H. de Almeida, T. L. da Selveira, and I. Le May. Material Characterization, 29: 387 (1992). Crossref
  15. T. L. Shinoda, M. B. Zaghloul, Y. Kondo, and R. Tanaka, Transactions of the Iron and Steel Institute of Japan, 18: 139 (1998).
  16. B. Piekarski, Material Characterization, 47: 181 (2001). Crossref
  17. R. Dehmolaei, M. Shamanian, and A. Kermanpur, Material Characterization, 59: 1447 (2008). Crossref
  18. S. Yu. Kondrat'ev, V. S. Kraposhin, G. P. Anastasiadi, and A. L. Talis, Acta Mater., 100: 275 (2015). Crossref
  19. E. A. Kenik, P. J. Maziasz, R. W. Swindeman, J. Cervenka, and D. May, Scr. Mater., 49: 117 (2003). Crossref
  20. D. J. Powell, R. Pilkington, and D. A. Miller, Acta Metall., 36, Iss. 3: 713 (1988). Crossref