Chemical Composition and Morphology of a Surface of Ionotron Nanostructures Fabricated on the Base of 2$D$ Layered Crystals of InSe and Ionic RbNO$_3$ Salt

A. P. Bakhtinov$^{1}$, V. M. Vodopyanov$^{1}$, V. I. Ivanov$^{1}$, V. L. Karbivskyi$^{2}$, Z. D. Kovalyuk$^{1}$, V. V. Netyaga$^{1}$, O. S. Lytvyn$^{3,4}$

$^{1}$I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, Chernivtsi Branch, 5 Vilde Str., UA-58001, Chernivtsi, Ukraine
$^{2}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$V.E. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 Nauky Ave., 03028 Kyiv, Ukraine
$^{4}$Borys Grinchenko Kyiv University, 18/2 Bulvarno-Kudriavska Str., UA-04053 Kyiv, Ukraine

Received: 07.10.2017. Download: PDF

As shown, the bulk vertical ionotronic nanostructures can be fabricated by using introduction of the ionic RbNO$_3$ salt melt between the (0001) layers of InSe crystal. The chemical composition and morphology of these structures are investigated by x-ray electron spectroscopy and atomic force microscopy. As determined, they consist of the ultrathin 2$D$ InSe layers separated by solid layers of ‘ion salt–In$_2$O$_3$’ electrolyte. During the self-organization process of such structures at temperatures of the melt, which exceed the temperature of the RbNO$_3$ decomposition onto nitrides and nitrates, the ‘ion salt–InSe’ heteroboundaries are oxidized, and nanostructures with high ionic conductivity are formed. They have the form of nanosize rings and are characterized by high lateral density $\sim 10^{9}–10^{10}$ сm$^{-2}$. As established, these nanostructures are grown in the (0001)InSe planes, which are arranged periodically at a distance of about tens nm along the crystallographic axis $C$.

Key words: InSe, RbNO$_3$, 2$D$ layers, ionotronic structures, ionotronic nanocomposite materials.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i11/1573.html

DOI: https://doi.org/10.15407/mfint.39.11.1573

PACS: 68.37.Ps, 68.55.J-, 71.20.Tx, 72.40.+w, 73.40.Mr, 81.05.Zx, 81.16.Dn, 85.30.Tv

Citation: A. P. Bakhtinov, V. M. Vodopyanov, V. I. Ivanov, V. L. Karbivskyi, Z. D. Kovalyuk, V. V. Netyaga, and O. S. Lytvyn, Chemical Composition and Morphology of a Surface of Ionotron Nanostructures Fabricated on the Base of 2$D$ Layered Crystals of InSe and Ionic RbNO$_3$ Salt, Metallofiz. Noveishie Tekhnol., 39, No. 11: 1573—1587 (2017) (in Ukrainian)


REFERENCES
  1. Zh. Lin, A. McCreary, N. Briggs, Sh. Subramanian, K. Zhang, Y. Sun, X. Li, N. J Borys, H. Yuan, S. K. Fullerton-Shirey, A. Chernikov, H. Zhao, S. McDonnell, A. M. Lindenberg, K. Xiao, B. J. LeRoy, M. Drndić, J. C. M. Hwang, J. Park, M. Chhowalla, R. E. Schaak, A. Javey, M. C. Hersam, J. Robinson, and M. Terrones, 2D Materials, 3, No. 4: 042001 (2016). Crossref
  2. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, ACS Nano, 7, No. 4: 2898 (2013). Crossref
  3. Y. J. Zhang, M. Yoshida, R. Suzuki, and Y. Iwasa, 2D Materials, 2, No. 4: 044004 (2015). Crossref
  4. D. A. Bandurin, A. V. Tyurnina, G. L. Yu, A. Mishchenko, V. Zolyomi, S. V. Morozov, R. K. Kumar, R. V. Gorbachev, Z. R. Kudrynskyi, S. Pezzini, Z. D. Kovalyuk, U. Zeitler, K. S. Novoselov, A. Patane, L. Eaves, I. V. Grigorieva, V. I. Fal'ko, A. K. Geim, and Y. Cao, Nat. Nanotech., 12, No. 3: 223 (2017). Crossref
  5. O. Del Pozo-Zamudio, S. Schwarz, M. Sich, I. A. Akimov, M. Bayer, R. C. Schofield, E. A. Chekhovich, B. J. Robinson, N. D. Kay, O. V. Kolosov, A. I. Dmitriev, G. V. Lashkarev, D. N. Borisenko, N. N. Kolesnikov, and A. I. Tartakovskii, arXiv:1501.02214 (2015).
  6. A. Politano, G. Chiarello, R. Samnakay, G. Liu, B. Gurbulak, S. Duman, A. A. Balandinc, and D. W. Boukhvalov, Nanoscale, 8, No. 16: 8474 (2016). Crossref
  7. N. Balacrishnan, Z. R. Kudrynskyi, E. F. Smith, M. W. Fay, O. Makarovsky, Z. D. Kovalyuk, L. Eaves, P. H. Beton, and A. Patane, 2D Materials, 4, No. 2: 025043 (2017). Crossref
  8. G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynskyi, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, and A. Patane, Advanced Mater., 27, No. 25: 3760 (2015). Crossref
  9. N. Balakrishnan, Z. R. Kudrynskyi, M. W. Fay, G. W. Mudd, S. A. Svatek, O. Makarovsky, Z. D. Kovalyuk, L. Eaves, P. H. Beton, and A. Patane, Advanced Optical Materials, 2, No. 11: 1064 (2014). Crossref
  10. A. I. Dmitriev, V. V. Vishnjak, G. V. Lashkarev, V. L. Karbovskyi, Z. D. Kovaljuk, and A. P. Bahtinov, Phys. Solid State, 53, No. 3: 622 (2011). Crossref
  11. Z. R. Kudrynskyi, A. P. Bakhtinov, V. N. Vodopyanov, Z. D. Kovalyuk, M. V. Tovarnitskii, and O. S. Lytvyn, Nanotechnology, 26, No. 46: 465601 (2015). Crossref
  12. O. A. Balitskii, R. V. Lutsiv, V. P. Savchyn, and J. M. Stakhira, Mat. Sci. Eng. B, 56, No. 1: 5 (1998). Crossref
  13. A. P. Bakhtinov, Z. D. Kovalyuk, O. N. Sydor, V. N. Katerinchuk, and O. S. Lytvyn, Phys. Solid State, 49, No. 8: 1572 (2007). Crossref
  14. A. P. Bakhtinov, V. M. Vodopyanov, Z. R. Kudrynskyi, M. Z. Kovalyuk, V. V. Netyaga, V. L. Karbivskyy, V. V. Vishniak, and O. S. Lytvyn, physica status solidi (a), 211, No. 2: 342 (2014). Crossref
  15. T. E. Beechham, B. M. Kowalski, M. T. Brumbach, A. E. McDonald, C. D. Spataru, S. W. Howell, T. Ohta, J. A. Pask, and N. G. Kalugin, Appl. Phys. Lett., 107, No. 17: 173103 (2015). Crossref
  16. R. Misra, M. McCarthy, and A. F. Hebard, Appl. Phys. Lett., 90, No. 5: 052905 (2007). Crossref
  17. A. V. Andreeva and A. L. Despotuli, Ionics, 11, Nos. 1–2: 152 (2005). Crossref
  18. A. P. Bakhtinov, V. N. Vodopyanov, Z. R. Kudrynskyi, and V. V. Netyaga, Sensor Letters, 11, No. 8: 1549 (2013). Crossref
  19. A. P. Bakhtinov, V. N. Vodopyanov, Z. D. Kovalyuk, V. V. Netyaga, and Yu. Konoplyanko, Semiconductors, 45, No. 3: 338 (2011). Crossref
  20. I. I. Grigorchak, V. V. Netyaga, and Z. D. Kovalyuk, J. Phys.: Condens. Matter, 9, No. 12: L191 (1997). Crossref
  21. A. P. Bakhtinov, V. N. Vodopyanov, Z. R. Kudrynskyi, Z. D. Kovalyuk, V. V. Netyaga, and O. S. Lytvyn, Solid State Ionics, 273, No. 5: 59 (2015). Crossref
  22. Z. R. Kudrins'kii and V. V. Netyaga, Zurnal Nano- ta Elektronnoii Fizyky, 5, No. 3: 03028 (2013) (in Ukrainian).
  23. J. Brojerdi, G. Tyuliev, D. Fargues, M. Eddrief, and M. Balkanski, Surface and Interface Analysis, 25, No. 2: 111 (1997). Crossref
  24. Yu. K. Delimarskiy, Elektrokhimiya Ionnykh Rasplavov (Moscow: Metallurgiya: 1978) (in Russian).
  25. N. F. Uvarov, P. Vanek, Yu. I. Yuzyuk, V. Zelezny, V. Studnicka, B. B. Bokhonov, V. E. Dulepov, and J. Petzelt, Solid State Ionics, 90, Nos. 1–4: 201 (1996). Crossref
  26. A. A. Iskakova and N. F. Uvarov, Solid State Ionics, 188, No. 1: 83 (2011). Crossref
  27. J. Lauth, F. E. S. Gorris, M. S. Khoshkhoo, T. Chasse, W. Friedrich, V. Lebedeva, A. Meyer, C. Klinke, A. Kornowski, M. Scheele, and H. Weller, Chem. Mater., 28, No. 6: 1728 (2016). Crossref
  28. M. Faur, M. Faur, D. T. Jayne, M. Goradia, and C. Goradia, Surf. Interface Anal., 15, No. 11: 641 (1990). Crossref
  29. C.-H. Ho, C.-H. Lin, Y.-P. Wang, Y.-C. Chen, S.-H. Chen, and Y.-S. Huang, ACS Appl. Mater. Interfaces, 5, No. 6: 2269 (2013). Crossref
  30. N. F. Uvarov, Uspekhi Khimii, 76, No. 5: 454 (2007) (in Russian). Crossref
  31. J. Maier, Solid State Ionics, 75: 139 (1995). Crossref
  32. S. M. Sze and G. Gibbons, Solid-State Electron., 9, No. 9: 831 (1966). Crossref
  33. A. P. Bakhtinov, V. N. Vodopyanov, V. V. Netyaga, Z. R. Kudrynskyi, and O. S. Lytvyn, Semiconductors, 46, No. 3: 342 (2012). Crossref
  34. O. V. Nekrasov, A. Yu. Zavrazhnov, V. N. Semenov, E. A. Dolgopolova, E. M. Averbakh, and A. T. Falkengof, Neorganicheskie Materialy, 30, No. 6: 737 (1994) (in Russian).