Reversible Effects of Instability in Tunnel Manganite–Metal Contacts

O. I. D’yachenko$^{1}$, V. Yu. Tarenkov$^{2}$, O. O. Boliasova$^{2}$, V. M. Krivoruchko$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 46 Nauky Ave., UA-03028 Kyiv, Ukraine

Received: 28.12.2017. Download: PDF

The effects of a manganite-surface electronic instability, which manifest themselves in nonlinearities (a sharp increase in a current) in the current–voltage characteristics of the contacts of manganite with a normal metal, are studied. As demonstrated with an example of the contacts of manganite, La$_{0.65}$Ca$_{0.35}$MnO$_3$, with silver, the manifestation of such effects in transport characteristics can be revealed in a certain energy interval. These nonlinearities in transport properties cannot be due to thermal effects and, most probably, are due to jumps of oxygen ions in the region of the tunnel barrier, which are stimulated by both the tunnelling current and the electric field applied to the contact.

Key words: tunnel contacts, instability effects, manganites, nanostructures, oxygen vacancies inside the barrier.



PACS: 73.20.-r, 73.23.-b, 73.40.Rw, 73.63.Rt, 74.72.Hs, 74.78.Na, 75.47.Lx

Citation: O. I. D’yachenko, V. Yu. Tarenkov, O. O. Boliasova, and V. M. Krivoruchko, Reversible Effects of Instability in Tunnel Manganite–Metal Contacts, Metallofiz. Noveishie Tekhnol., 40, No. 3: 291—299 (2018) (in Russian)

  1. P. P. Chawan and P. Gupta, International Journal of Electronics, Electrical and Computational System, 6, Iss. 5: 1L6F7M (2017).
  2. Y. B. Nian, J. Strozier, N. J. Wu, X. Chen, and A. Ignatiev, Phys. Rev. Lett., 98: 146403 (2007). Crossref
  3. R. Waser and M. Aono, Nature Materials, 6: 833 (2007). Crossref
  4. V. Krivoruchko, T. Konstantinova, A. Mazur, A. Prokhorov, and V. Varyukhin, J. Magn. Magn. Mater., 300: e122–e125 (2006). Crossref
  5. A. S. Mazur, V. N. Krivoruchko, and I. A. Danilenko, Low Temp. Phys., 33, No. 11: 931 (2007). Crossref
  6. A. N. Ulyanov, D. S. Yang, A. S. Mazur, V. N. Krivoruchko, G. G. Levchenko, I. A. Danilenko, and T. E. Konstantinova, J. Appl. Phys., 109: 123928 (2011). Crossref
  7. S. Yunoki, E. Dagotto, S. Costamagna, and J. A. Riera, Phys. Rev. B, 78: 024405 (2008). Crossref
  8. N. A. Tulina, Physics-Uspekhi, 50, No. 11: 1171 (2007). Crossref
  9. R. Gross, L. Alff, B. Büchner, B. H. Freitag, C. Höfener, J. Klein, Ya. Lu, W. Mader, J. B. Philipp, M. S. R. Rao, P. Reutler, S. Ritter, S. Thienhaus, S. Uhlenbruck, and B. Wiedenhorst, Journal of Magnetism and Magnetic Materials, 211, Iss. 1–3: 150 (2000). Crossref
  10. V. Yu. Tarenkov, A. I. D'yachenko, and V. N. Krivoruchko, JETP, 93, No. 1: 180 (2001). Crossref
  11. N. F. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials (Oxford: Clarendon Press: 2012).
  12. J. Bourgoin and M. Lannoo, Point Defects in Semiconductors II. Experimental Aspects (Berlin–Heidelberg–New York: Springer: 1983), vol. 35. Crossref
  13. V. B. Fiks, Ionnaya Provodimost v Metallakh i Poluprovodnikakh (Moscow: Nauka: 1969) (in Russian).
  14. E. Burstein and S. Lundqvist, Tunnelling Phenomena in Solids (New York: Plenum Press: 1969). Crossref