Influence of a Charge State of Atom on Intensity of X-Ray $K_{\alpha}L^{1}$ Emission of Ti and Cr

M. A. M. Al-Omari, M. O. Borovyi

Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine

Received: 12.12.2017. Download: PDF

The relative intensity, $\gamma = I(^{3}P)/I(^{1}P)$, of the group of X-ray emission Ti and Cr $K_{\alpha}L^{1}$-satellites in metals and their ion–covalent compounds is experimentally investigated. As established, the value of $\gamma$ decreases by 30–50% at the transition from metals, Ti and Cr, to carbides and oxides, TiC, Cr$_3$C$_2$, TiO$_2$, Cr$_2$O$_3$, with increasing of effective charge of metal atoms. The cause of the $\gamma$ value decreasing may be due to the dependence of the $KL_{2,3}(^{3}P){\varepsilon}p(^{2}S)$ and $KL_{2,3}(^{1}P){\varepsilon}p(^{2}S)$ configurations’ interaction on the screening of the $K$- and $L_{2,3}$-vacancies by free electrons. In metals, this screening substantially reduces the amplitudes of transitions between the states of the $KL_{2,3}(^{3}P){\varepsilon}p(^{2}S)$ and $KL_{2,3}(^{1}P){\varepsilon}p(^{2}S)$ configurations. In ion–covalent compounds, the screening is practically absent; so, a significant enhancement of the Coulomb interaction of the ejected 2$p$-electron with $L_{2,3}$-vacancy leads to a mixture of the $^{3}P$- and $^{1}P$ states of $KL_{2,3}$-configuration by means of the intense interchannel $KL_{2,3}(^{3}P){\varepsilon}p(^{2}S) \to KL_{2,3}(^{1}P){\varepsilon}p(^{2}S)$ transitions.

Key words: effective charge, X-ray $K_{\alpha}L^{1}$ satellites, screening, configuration interaction.



PACS: 32.30.Rj, 34.80.Dp, 78.70.En, 79.20.Ap, 79.20.Kz, 82.80.Pv

Citation: M. A. M. Al-Omari and M. O. Borovyi, Influence of a Charge State of Atom on Intensity of X-Ray $K_{\alpha}L^{1}$ Emission of Ti and Cr, Metallofiz. Noveishie Tekhnol., 40, No. 3: 301—310 (2018) (in Ukrainian)

  1. V. V. Nemoshkalenko, Rentgenovskie Emissionnye Spektry Metallov i Splavov [X-Ray Emission Spectra of Metals and Alloys] (Kiev: Naukova Dumka: 1972) (in Russian).
  2. L. Mandić, S. Fazinić, and M. Jakšić, Phys. Rev. A, 80: 042519 (2009). Crossref
  3. I. Han and L. Demir, Phys. Rev. A, 82: 042514 (2010). Crossref
  4. V. P. Sachenko and V. F. Demekhin, ZhETF, 3, No. 49: 765 (1965) (in Russian).
  5. N. Shigeoka, H. Oohashi, and T. Tochio, Phys. Rev. A, 69, No. 5: 052505 (2004). Crossref
  6. R. Diamant, R. Sharon, and W. A. Caliebe, J. Phys. B, 39, No. 3: 651 (2006). Crossref
  7. V. F. Demekhin and V. P. Sachenko, Izvestiya AN SSSR. Ser. Fizika, 31, No. 6: 907 (1967) (in Russian).
  8. T. Åberg, Phys. Rev., 156, No. 1: 35 (1967). Crossref
  9. P. D. Pérez, A. C. Carreras, and J. C. Trincavelli, J. Phys. B, 45, No. 2: 025004 (2012). Crossref
  10. N. A. Borovoi and Yu. P. Gololobov, Phys. Sol. State, 39, No. 9: 1474 (1997). Crossref
  11. A. Salnik, Yu. P. Gololobov, and N. A. Borovoy, Ferroelectrics, 484: 62 (2015). Crossref
  12. N. A. Borovoi, V. V. Ivanov, and V. I. Shiyanovskii, Optics and Spectroscopy, 86, No. 1: 11 (1999).
  13. A. R. Cherkasov, V. S. Galkin, and E. M. Zueva, Uspekhi Khimii, 7, No. 5: 423 (1998) (in Russian).
  14. R. Couch and L. Bruce, Phys. Rev. A, 44, No. 5: 3016 (1991). Crossref
  15. J. H. Scofield, Phys. Rev. A, 9, No. 3: 1041 (1974). Crossref
  16. C. D. Lin, Phys. Rev. A, 9, No. 1: 171 (1974). Crossref
  17. A. F. Starace, Phys. Rev. A, 2, No. 1: 118 (1970). Crossref
  18. D. Chattarji, W. Mehlhorn, and V. Schmidt, Journal of Electron Spectroscopy and Related Phenomena, 13, No. 2: 97 (1978). Crossref
  19. N. N. Sobel'man, Vvedenie v Teoriyu Atomnykh Spektrov [Introduction to the Theory of Atomic Spectra] (Moscow: GIFML: 1963) (in Russian).