Electrical Conduction and Thermal Conduction of Metal–Polymer Composites

A. I. Misiura$^{1}$, Ye. P. Mamunya$^{2}$

$^{1}$Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine
$^{2}$Institute of Macromolecular Chemistry, N.A.S. of Ukraine, 48 Kharkiv Highway, UA-02160 Kyiv, Ukraine

Received: 27.12.2017. Download: PDF

The electroconductive and thermal conductive properties of polymer composites are investigated. Studied composites are based on epoxy resin (ER) with dispersed copper (Cu) and nickel (Ni). The electrical conductivity of composites obeys the percolation theory with the percolation threshold equal to 9.9% vol. and 4.0% vol. for the ER–Cu and ER–Ni composites, respectively. Several theoretical models are used to describe the thermal conductivity of the metal-filled composites. Using the Lichtenecker model, the value of the thermal conductivity of the composites’ dispersed phase is found to be 35 W/(m$\cdot$K) for Cu and 13 W/(m$\cdot$K) for Ni, that is much less than the thermal conductivity of solid metals. As shown, the filler affects the molecular mobility of polymer matrix that leads to the increase of the glass-transition temperature of the ER–Cu and ER–Ni composites.

Key words: metal–polymer composites, electrical conduction, thermal conduction, glass-transition temperature.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i03/0311.html

DOI: https://doi.org/10.15407/mfint.40.03.0311

PACS: 62.23.Pq, 64.60.ah, 66.70.Hk, 72.80.Tm, 81.05.Lg, 81.05.Qk, 82.35.Np

Citation: A. I. Misiura and Ye. P. Mamunya, Electrical Conduction and Thermal Conduction of Metal–Polymer Composites, Metallofiz. Noveishie Tekhnol., 40, No. 3: 311—326 (2018) (in Ukrainian)


REFERENCES
  1. M. ul Haq and Z. Gang, Emerging Materials Research, 5, No. 1: 153 (2016). Crossref
  2. S. Atique, N. Probha, and A. Nafi, International Conference on Mechanical, Industrial and Energy Engineering (Dec. 26–27, 2014, Khulna, Bangladesh) p. 140287-1.
  3. N. Nayak, International Journal of Scientific and Research Publications, 4, No. 9: 1 (2014).
  4. G. Kaur, R. Adhikari, P. Cass, M. Bown, and P. Gunatillake, RSC Advances, 5: 37553 (2015). Crossref
  5. I. Plesa, P. Notingher, S. Schlogl, C. Sumereder, and M. Muhr, Polymers, 8, No. 5: 1 (2016). Crossref
  6. S. Amancio-Filho and J. Santos, Polym. Eng. Sci., 49, No. 8: 1461 (2009). Crossref
  7. T. Hanemann and D. Szabo, Materials, 3, No. 6: 3468 (2010). Crossref
  8. Ye. P. Mamunya, M. V. Iurzhenko, E. V. Lebedev, V. V. Levchenko, O. V. Chervakov, O. K. Matkovska, and O. S. Sverdlikovska, Elektroaktyvni Polimerni Materialy [Electroactive Polymer Materials] (Kyiv: Alpha-Reklama: 2013) (in Ukrainian).
  9. Ye. P. Mamunya, V. V. Davydenko, P. Pissis, and E. V. Lebedev, Eur. Polym. J., 38, No. 9: 1887 (2002). Crossref
  10. A. Maaroufi, K. Haboubi, A. Amarti, and F. Carmona, J. Mater. Sci., 39, No. 1: 265 (2004). Crossref
  11. F. Roussel, R. King, M. Kuriakose, M. Depriester, A. Hadj-Sahraoui, C. Gors, A. Addad, and J. Brun, Synth. Met., 199: 196 (2015). Crossref
  12. M. Jouni, A. Boudenne, G. Boiteux, V. Massardier, B. Garnier, and A. Serghei, Polym. Compos., 34, No. 5: 778 (2013). Crossref
  13. A. Luyt, J. Molefi, and H. Krump, Polym. Degrad. Stab., 91, No. 7: 1629 (2006). Crossref
  14. A. Gelves, B. Lin, U. Sundararaj, and J. A. Haber, Adv. Funct. Mater., 16, No. 18: 2423 (2006). Crossref
  15. Q. Xue, Eur. Polym. J., 40, No. 2: 323 (2004). Crossref
  16. H. P. Wu, X. J. Wu, M. Y. Ge, G. Q. Zhang, Y. W. Wang, and J. Z. Jiang, Compos. Sci. Technol., 67, No. 6: 1116 (2007). Crossref
  17. A. Sahu, D. Mondloe, and S. Upadhyay, IRJET, 4, No. 6: 579 (2017).
  18. K. Pietrak and T. Wisniewski, J. Power Technologies, 95, No. 1: 14 (2015).
  19. D. Kumlutas and I. Tavman, J. Thermoplast. Compos. Mater., 19, No. 4: 441 (2006). Crossref
  20. S. Yu, J. Lee, T. Han, Ch. Park, Y. Kwon, S. Hong, and Ch. Koo, ACS Appl. Mater. Interfaces, 5: 11618 (2013). Crossref
  21. A. Boudenne, L. Ibos, M. Fois, J. Majeste, and E. Gehin, Composites, 36, No. 11: 1545 (2005). Crossref
  22. S. Zhang, X. Cao, Y. Ma, Y. Ke, J. Zhang, and F. Wang, eXPRESS Polym. Let., 5, No. 7: 581 (2011). Crossref
  23. G. Droval, J. Feller, P. Salagnac, and P. Glouannec, Polym. Adv. Technol., 17, Nos. 9–10: 732 (2006). Crossref
  24. R. Progelhof, J. Throne, and R. Ruetsch, Polym. Eng. Sci., 16, No. 9: 615 (1976). Crossref
  25. A. Boudenne, L. Ibos, M. Fois, E. Gehin, and J. Majestej, J. Polym. Sci., 42, No. 4: 722 (2004). Crossref
  26. S. Okamoto and H. Ishida, J. App. Polym. Sci., 72, No. 13: 1689 (1999). Crossref
  27. Ye. P. Mamunya, V. V. Levchenko, I. M. Parashchenko, and E. V. Lebedev, Polimernyy Zhurnal, 38, No. 1: 3 (2016) (in Ukrainian).