Applied Capabilities of X-Ray Topography of Crystals in the Skew-Asymmetric Bragg Diffraction

I. M. Fodchuk$^{1}$, R. A. Zaplitnyy$^{1}$, Yu. T. Roman$^{1}$, V. B. Molodkin$^{2}$, T. P. Vladimirova$^{2}$, Z. Świątek$^{3}$

$^{1}$Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubynsky Str., UA-58012 Chernivtsi, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$Institute of Metallurgy and Materials Science, Polish Academy of Science, 25 Reymonta Str., 30-059 Krakow, Poland

Received: 03.03.2018. Download: PDF

The applied capabilities of use of modified Berg–Barrett topographic method in the skew-asymmetric x-ray Bragg diffraction setup for the study of morphology and structural changes near crystal surface are shown. A controlled change in the extinction depth of x-ray penetration opens up new possibilities for investigation of structural changes in semiconductor materials after various external influences.

Key words: x-ray diffraction, x-ray topography, structural diagnostics, Berg–Barrett method.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i05/0561.html

DOI: https://doi.org/10.15407/mfint.40.05.0561

PACS: 07.85.-m, 41.50.+h, 61.05.C-, 61.72.Ff, 68.55.J-, 68.55.Ln, 81.05.Dz

Citation: I. M. Fodchuk, R. A. Zaplitnyy, Yu. T. Roman, V. B. Molodkin, T. P. Vladimirova, and Z. Świątek, Applied Capabilities of X-Ray Topography of Crystals in the Skew-Asymmetric Bragg Diffraction, Metallofiz. Noveishie Tekhnol., 40, No. 5: 561—583 (2018) (in Russian)


REFERENCES
  1. W. F. Berg, Naturwissenschaften, 19, No. 8: 391 (1931). Crossref
  2. C. S. Barrett, Trans. AIME, 161, No. 1: 15 (1945).
  3. G. N. Ramachandran, Proc. Indian Acad. Sci., 19: 280 (1944).
  4. T. Bedynska, phys. status solidi (a), 19, Iss. 1: 365 (1973). Crossref
  5. B. K. Tanner, X-Ray Diffraction Topography (Oxford: Pergamon Press–Oxford University Press: 1976).
  6. D. K. Bowen and B. K. Tanner, High Resolution X-Ray Diffractometry and Topography (London: Taylor and Francis Ltd.: 1998).
  7. A. Authier, Dynamical Theory of X-Ray Diffraction (New York: Oxford University Press: 2001).
  8. D. R. Black and G. G. Long, X-Ray Topography (Washington: US Covernment Printing Office: 2004). Crossref
  9. V. Holy, U. Pietsch, and T. Baumbach, High-Resolution X-Ray Scattering from Thin Films and Multilayers (Heidelberg: Springer: 1999).
  10. A. M. Afanas'ev and M. K. Melkonyan, Acta Cryst. A, A39, No. 2: 207 (1983). Crossref
  11. A. M. Afanas'ev, P. A. Aleksandrov, and R. M. Imamov, Rentgenodifraktsionnaya Diagnostika Submikronnykh Sloev [X-Ray Diffraction Diagnostics of Submicron Layers] (Moscow: Nauka: 1989) (in Russian).
  12. R. M. Imamov, A. A. Lomov, and D. V. Novikov, phys. status solidi (a), 115, Iss. 2: K133 (1989). Crossref
  13. D. Novikov, M. Ohler, R. Köhler, and G. Meterlik, J. Phys. D: Appl. Phys., 28, No. 4A: A84 (1995). Crossref
  14. J. Hartwig, J. Phys. D: Appl. Phys., 34, No. 10A: A70 (2001). Crossref
  15. J.-F. Petroff, Applications of X-Ray Topographic Methods to Materials Science (Eds. S. Weissmann, F. Balibar, and J.-F. Petroff) (New York: Plenum Press: 1984), p. 536.
  16. M. Kuriyama and G. G. Long, Applications of X-Ray Topographic Methods to Materials Science (Eds. S. Weissmann, F. Balibar, and J.-F. Petroff) (New York: Plenum Press: 1984), p. 536.
  17. V. L. Indenbom and V. M. Kaganer, phys. status solidi (a), 87, Iss. 1: 253 (1985). Crossref
  18. U. Bonse, Direct Observation of Imperfections in Crystals (New York: Willey: 1962).
  19. V. B. Molodkin, A. I. Nizkova, A. P. Shpak, V. F. Machulin, V. P. Klad'ko, I. V. Prokopenko, R. N. Kyutt, E. N. Kislovskiy, S. I. Olikhovskiy, I. M. Fodchuk, A. A. Dyshekov, and Yu. P. Khapachev, Difraktometriya Nanorazmernykh Defektov i Geterosloev Kristallov [Diffractometry of Nanosize Defects and Heterolayers of Crystals] (Kyiv: Akademperiodyka: 2005) (in Russian).
  20. P. Riglet, M. Sauvage, J. P. Petroff, and Y. Epelboin, Philos. Mag., 42, No. 3: 339 (1980). Crossref
  21. T. Kitano, T. Ishikawa, and J. Matsui, Philos. Mag., 63, No. 1: 95 (1991). Crossref
  22. M. G. Tsoutsouva, V. A. Oliveira, J. Baruchel, D. Camel, B. Marie, and T. A. Lafford, J. Appl. Cryst., 48, No. 1: 645 (2015). Crossref
  23. W. Ludwig, P. Cloetens, J. Hartwig, J. Baruchel, B. Hamelin, and P. Bastie, J. Appl. Cryst., 34, No. 5: 602 (2001). Crossref
  24. D. Lübbert, T. Baumbach, J. Härtwig, E. Boller, and E. Pernot, Nucl. Instrum. Methods Phys. Res. (b), 160, No. 4: 521 (2000). Crossref
  25. D. Lübbert and T. Baumbach, J. Appl. Cryst., 40, No. 5: 595 (2007). Crossref
  26. D. Grigoriev, S. Lazarev, P. Schroth, A. A. Minkevich, M. Kohl, T. Slobodskyy, M. Helfrich, D. M. Schaadt, T. Aschenbrenner, D. Hommel, and T. Baumbach, J. Appl. Cryst., 49, No. 3: 961 (2016). Crossref
  27. F. Rustichelli, Philos. Mag., 31, No. 1: 1 (1975). Crossref
  28. O. Brummer, H. R. Hoche, and J. Nieber, phys. status solidi (a), 33, Iss. 2: 587 (1976). Crossref
  29. O. Brummer, H. R. Hoche, and J. Nieber, phys. status solidi (a), 37, Iss. 2: 529 (1976). Crossref
  30. J. Hartwig, Exp. Tech. Phys., 26, No. 3: 535 (1978).
  31. S. Stepanov, Proc. SPIE, 5536: 16 (2004). Crossref
  32. V. Lerche, P. Dornfelder, and J. Hartwig, phys. status solidi (a), 128, Iss. 2: 269 (1991). Crossref
  33. S. A. Kshevetskiy, Yu. P. Stetsko, I. M. Fodchuk, I. V. Mel'nichuk, and V. S. Polyanko, Ukr. Fiz. Zhurn., 35, No. 3: 444 (1990) (in Russian).
  34. I. M. Fodchuk and O. S. Kshevetskiy, Metallofizika, 14, No. 5: 57 (1992) (in Russian).
  35. I. M. Fodchuk, A. M. Raransky, and A. V. Evdokimenko, Proc. SPIE, 3045: 37 (1995).
  36. I. M. Fodchuk, A. N. Raranskiy, and A. V. Evdokimenko, Neorganicheskie Materialy, 31, No. 10: 1669 (1995) (in Russian).
  37. V. Savitsky, L. Mansurov, I. Fodchuk, I. Izhnin, I. Virt, M. Lozynska, and A. Evdokimenko, Proc. SPIE, 3725: 299 (1998). Crossref
  38. Z. Świątek, J. T. Bonarski, R. Ciach, Z. T. Kuźnicki, I. M. Fodchuk, M. D. Raransky, and P. Gorley, Thin Solid Films, 319, Nos. 1–2: 39 (1998). Crossref
  39. Z. T. Kuznicki, R. Ciach, Z. Swiatek, N. D. Raranskii, I. M. Fodchuk, P. N. Gorlei, and D. V. Kadel'nik, Inorg. Mater., 36, No. 5: 508 (2000). Crossref
  40. J. T. Bonarski, M. Zehetbauer, Z. Swiatek, I. M. Fodchuk, I. Kopacz, S. Bernstorff, and H. Amenitsch, Opto-Electron. Rev., 8, No. 4: 323 (2000).
  41. I. V. Litvinchuk, Z. Svyantek, and I. M. Fodchuk, Metallofiz. Noveishie Tekhnol., 27, No. 8: 71 (2004) (in Russian).
  42. R. A. Zaplitnyy, T. A. Kazemirskiy, I. M. Fodchuk, and Z. Svyantek, Metallofiz. Noveishie Tekhnol., 27, No. 8: 915 (2006) (in Russian).
  43. I. Fodchuk, R. Zaplitnyy, T. Kazemirskiy, and Z. Swiatek, phys. status solidi (a), 204, Iss. 8: 2714 (2007). Crossref
  44. A. P. Vlasov, O. Yu. Bonchyk, S. G. Kiyak, I. M. Fodchuk, R. M. Zaplitnyy, T. Kazemirskiy, A. Barcz, P. S. Zieba, Z. Swiatek, and W. Maziarz, Thin Solid Films, 516, No. 22: 8106 (2008). Crossref
  45. I. Fodchuk, R. Zaplitnyy, T. Kazemirskiy, I. Litvinchuk, and Z. Swiatek, phys. status solidi (a), 206, Iss. 8: 1804 (2009). Crossref
  46. Z. Swiatek and I. M. Fodchuk, Arch. Metall. Mater., 61, No. 4: 1931 (2016). Crossref
  47. Z. Swiatek, I. Fodchuk, and R. Zaplitnyy, J. Appl. Crystallogr., 50, No. 3: 727 (2017). Crossref
  48. V. B. Molodkin, S. I. Olikhovskii, E. G. Len, Ye. M. Kyslovskyy, O. V. Reshetnyk, T. P. Vladimirova, B. V. Sheludchenko, O. S. Skakunova, V. V. Lizunov, E. V. Kochelab, I. M. Fodchuk, and V. P. Klad'ko, Metallofiz. Noveishie Tekhnol., 38, No. 1: 99 (2016). Crossref
  49. W. E. Tennant, C. A. Cockrum, J. B. Gilpin, M. A. Kinch, M. B. Reine, and R. P. Ruth, J. Vac. Sci. Technol. B, 10, No. 4: 1359 (1992). Crossref
  50. S. Takagi, Acta Cryst., 15, No. 16: 1311 (1962). Crossref