The $K_{\alpha}L^1$, $K_{\alpha}L^2$, and $K_{\alpha}L^3$ X-Ray Emission of Aluminium under Electron Impact

M. A. M. Al-Omari, M. O. Borovyi

Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine

Received: 05.02.2018. Download: PDF

The relative intensities, $\gamma = I(K_{\alpha}L^1)/I(K_{\alpha_{1,2}})$, $\eta = I(K_{\alpha}L^2)/I(K_{\alpha}L^1)$ and $\chi = I(K_{\alpha}L^3)/I(K_{\alpha}L^1)$, of x-ray emission $K_{\alpha_{1,2}}$, $K_{\alpha}L^1$, $K_{\alpha}L^2$, and $K_{\alpha}L^3$ lines’ groups of aluminium are experimentally studied under the excitation by electron impact in the range of accelerating voltages $U =$ 4.5–100 kV. The model of $K_{\alpha}$ x-ray emission has been proposed and takes into account the main channels of multiply ionized $KL^n_{2,3}$ states’ decay. As found, the probabilities of creation of $KL_{2,3}$ configuration ($P_1$), $KL^2_{2,3}$ configuration ($P_2$) and $KL^3_{2,3}$ configuration ($P_3$) monotonically decrease when bombarding-electron energy $E$ > 20 keV. The observed decrease of the $P_1$, $P_2$ and $P_3$ values can be explained by decreasing of the average energy transferred to the atom in electron–atom collision. The $P_2$ and $P_3$ probabilities significantly exceed (by 1.6 to 2.5 times) their values predicted within the shake-off approximation of simultaneous independent ejecting of two and three $2p$ electrons that indicates a significant role of the $2p–2p$ electron correlations in $KL^n_{2,3}$ ionization processes. As shown, the $P_{21} = P_{2}/P_{1}$ and $P_{31} = P_{3}/P_{1}$ ratios are practically constant in the whole range of accelerating voltages and are the parameters characterizing the values of $2p–2p$ electron correlations.

Key words: $K_{\alpha}$ x-ray emission, multiply ionized $KL^n_{2,3}$ states, $2p–2p$ electron correlations.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i05/0585.html

DOI: https://doi.org/10.15407/mfint.40.05.0585

PACS: 32.30.Rj, 32.80.Zb, 34.80.Dp, 78.70.En, 79.20.Ap, 79.20.Kz

Citation: M. A. M. Al-Omari and M. O. Borovyi, The $K_{\alpha}L^1$, $K_{\alpha}L^2$, and $K_{\alpha}L^3$ X-Ray Emission of Aluminium under Electron Impact, Metallofiz. Noveishie Tekhnol., 40, No. 5: 585—592 (2018)


REFERENCES
  1. V. P. Sachenko and V. F. Demekhin, ZhETF, 3, No. 49: 765 (1965) (in Russian).
  2. M. Kavčič, M. Budnar, and J. L. Campbell, Nucl. Instrum. Meth. B, 196, Nos. 1–2: 16 (2002). Crossref
  3. V. Horvat, R. L. Watson, and Yong Peng, Phys. Rev. A, 74, No. 2: 022718 (2006). Crossref
  4. J. Hoszovska, J.-Cl. Dousse, J. Kern, and Ch. Rheme, Nucl. Instrum. Meth. A, 376: 129 (1996). Crossref
  5. T. Mukoyama and K. Taniguchi, Phys. Rev. A, 36, No. 2: 693 (1987). Crossref
  6. A. G. Kochur and V. A. Popov, J. Phys. B, 35: 395 (2002). Crossref
  7. A. G. Kochur, A. I. Dudenko, and D. Petrini, Optics and Spectroscopy, 100, No. 5: 645 (2006). Crossref
  8. N. A. Borovoy, V.V. Ivanov, and V. I. Shiyanovskii, Optics and Spectroscopy, 86, No. 1: 11 (1999).
  9. N. A. Borovoy, V. V. Ivanov, V. F. Surzhko, and V. I. Shiyanovskii, Ukr. Journ. Phys., 46, No. 1: 70 (2001).
  10. M. Y. Amusia, Protsessy v Mnogoelectronnykh Atomakh [Processes in Multielectron Atoms] (St. Petersburg: Nauka: 2006) (in Russian).
  11. E. Mikkola and O. Keski-Rahkonen, Phys. Scr., 28: 188 (1983). Crossref
  12. O. Keski-Rahkonen, K. Reinikainen, and E. Mikkola, Phys. Scr., 28: 179 (1983). Crossref
  13. N. A. Borovoi and Yu. P. Gololobov, Phys. Sol. State, 39, No. 9: 1474 (1997). Crossref
  14. A. Salnik, Yu. P. Gololobov, and N. A. Borovoy, Ferroelectrics, 484: 62 (2015). Crossref
  15. M. O. Krause and J. H. Oliver, J. Phys. Chem. Ref. Data, 8, No. 2: 329 (1979). Crossref
  16. M. O. Krause, J. Phys. Chem. Ref. Data, 8, No. 2: 307 (1979). Crossref
  17. M. H. Chen and B. Crasemann, Atom. Data Nucl. Data Tabl., 8: 13 (1979). Crossref