Simulation of X-Ray Diffraction Spectra for AlN/GaN Multiple Quantum Well Structures on AlN(0001) with Interface Roughness and Variation of Vertical Layers Thickness

O. I. Liubchenko, V. P. Kladko

V. E. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 Nauky Ave., UA-03028 Kyiv, Ukraine

Received: 06.04.2018. Download: PDF

A detailed XRD analysis of AlN/GaN multiple quantum well (MQW) structures grown on AlN(0001) substrates is proposed. The effect of roughness on the 2$\theta‒\omega$ scans measured in Bragg diffraction for symmetrical reflections is investigated together with the effect of depth variation of the well and barrier thickness. As shown, the magnitude of depth variation of the well and barrier thickness results in an asymmetrical broadening of the satellite peaks of the 2$\theta‒\omega$ scans. Roughness causes their symmetrical expansion that allows separating the influence of both effects. Several reasons of asymmetrical broadening of satellite peaks are considered: variation of the thickness period, variation of the average lattice parameter inherent to the period, which depends on the thickness ratio of the layers in the period, and their combination. The efficiency of the described method is illustrated in detail by numerical simulations.

Key words: dynamical X-ray diffraction, multiple quantum well structure, thickness variation with depth, computer simulation, superlattice.



PACS:, 61.05.cp, 68.35.Ct, 68.65.Ac, 68.65.Cd, 68.65.Fg, 81.05.Ea

Citation: O. I. Liubchenko and V. P. Kladko, Simulation of X-Ray Diffraction Spectra for AlN/GaN Multiple Quantum Well Structures on AlN(0001) with Interface Roughness and Variation of Vertical Layers Thickness, Metallofiz. Noveishie Tekhnol., 40, No. 6: 759—776 (2018)

  1. A. Kaminska, P. Strak, J. Borysiuk, K. Sobczak, J. Z. Domagala, M. Beeler, E. Grzanka, K. Sakowski, S. Krukowski, and E. Monroy, J. Appl. Phys., 119, No. 1: 015703 (2016). Crossref
  2. X. Li, D. G. Zhao, D. S. Jiang, J. Yang, P. Chen, Z. S. Liu, J. J. Zhu, W. Liu, X. G. He, X. J. Li, F. Liang, J. P. Liu, L. Q. Zhang, H. Yang, Y. T. Zhang, G. T. Du, H. Long, and M. Li, Chinese Phys. B, 26, No. 1: 017805 (2017). Crossref
  3. W. Liu, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, J. J. Zhu, M. Shi, D. M. Zhao, X. Li, J. P. Liu, S. M. Zhang, H. Wang, and H. Yang, J. Alloys Compd., 625: 266 (2015). Crossref
  4. P. M. McBride, Q. Yan, and C. G. Van De Walle, Appl. Phys. Lett., 105, No. 8: 083507 (2014). Crossref
  5. J. Piprek and Z. M. Simon Li, Appl. Phys. Lett., 102, No. 2: 023510 (2013). Crossref
  6. X. C. Wei, L. Zhang, N. Zhang, J. X. Wang, and J. M. Li, MRS Adv., 1, No. 2: 197 (2016). Crossref
  7. A. Kaminska, D. Jankowski, P. Strak, K. P. Korona, M. Beeler, K. Sakowski, E. Grzanka, J. Borysiuk, K. Sobczak, E. Monroy, and S. Krukowski, J. Appl. Phys., 120, No. 9: 095705 (2016). Crossref
  8. M. Beeler, C. Bougerol, E. Bellet-Amalric, and E. Monroy, Appl. Phys. Lett., 103, No. 9: 091108 (2013). Crossref
  9. H. MacHhadani, Y. Kotsar, S. Sakr, M. Tchernycheva, R. Colombelli, J. Mangeney, E. Bellet-Amalric, E. Sarigiannidou, E. Monroy, and F. H. Julien, Appl. Phys. Lett., 97, No. 19: 191101 (2010). Crossref
  10. M.-M. Liang, G.-E. Weng, J.-Y. Zhang, X.-M. Cai, X.-Q. Lü, L.-Y. Ying, and B.-P. Zhang, Chin. Phys. B, 23, No. 5: 054211 (2014). Crossref
  11. M. Beeler, E. Trichas, and E. Monroy, Semicond. Sci. Technol., 28, No. 7: 074022 (2013). Crossref
  12. H. Machhadani, P. Kandaswamy, S. Sakr, A. Vardi, A. Wirtmüller, L. Nevou, F. Guillot, G. Pozzovivo, M. Tchernycheva, A. Lupu, L. Vivien, P. Crozat, E. Warde, C. Bougerol, S. Schacham, G. Strasser, G. Bahir, E. Monroy, and F. H. Julien, New J. Phys., 11, No. 12: 125023 (2009). Crossref
  13. P. K. Kandaswamy, F. Guillot, E. Bellet-Amalric, E. Monroy, L. Nevou, M. Tchernycheva, A. Michon, F. H. Julien, E. Baumann, F. R. Giorgetta, D. Hofstetter, T. Remmele, M. Albrecht, S. Birner, and L. S. Dang, J. Appl. Phys., 104, No. 9: 093501 (2008). Crossref
  14. H. Rhan, U. Pietsch, S. Rugel, H. Metzger, and J. Peisl, J. Appl. Phys., 74, No. 1: 146 (1993). Crossref
  15. O. Kolomys, B. Tsykaniuk, V. Strelchuk, A. Naumov, V. Kladko, Y. I. Mazur, M. E. Ware, S. Li, A. Kuchuk, Y. Maidaniuk, M. Benamara, A. Belyaev, and G. J. Salamo, J. Appl. Phys., 122, No. 15: 155302 (2017). Crossref
  16. H. V. Stanchu, A. V. Kuchuk, M. Barchuk, Y. I. Mazur, V. P. Kladko, Z. M. Wang, D. Rafaja, and G. J. Salamo, Cryst. Eng. Comm., 19, No. 22: 2977 (2017). Crossref
  17. J. Gaca and M. Wojcik, Appl. Phys. Lett., 65, No. 8: 977 (1994). Crossref
  18. S. B. Kryvyi, P. M. Lytvyn, V. P. Kladko, H. V. Stanchu, A. V. Kuchuk, Y. I. Mazur, G. J. Salamo, S. Li, P. P. Kogutyuk, and A. E. Belyaev, J. Vac. Sci. Technol. B: Nanotechnol. Microelectron., 35, No. 6: 062902 (2017). Crossref
  19. A. Chandolu, S. Nikishin, M. Holtz, and H. Temkin, J. Appl. Phys., 102, No. 11: 114909 (2007). Crossref
  20. P. F. Fewster, V. Holy, and N. L. Andrew, Mater. Sci. Semicond. Process., 4, No. 6: 475 (2001). Crossref
  21. R. N. Kyutt, A. Y. Khil'ko, and N. S. Sokolov, Phys. Solid State, 40, No. 8: 1417 (1998). Crossref
  22. V. Kladko, A. Kuchuk, P. Lytvyn, O. Yefanov, N. Safriuk, A. Belyaev, Y. I. Mazur, E. A. DeCuir, M. E. Ware, and G. J. Salamo, Nanoscale Res. Lett., 7, No. 1: 289 (2012). Crossref
  23. A. Sanz-Hervás, M. Aguilar, J. L. Sánchez-Rojas, A. Sacedón, E. Calleja, E. Mu-oz, C. Villar, E. J. Abril, and M. López, J. Appl. Phys., 82, No. 7: 3297 (1997). Crossref
  24. V. I. Punegov, Phys. Status Solidi (a), 136, No. 1: 9 (1993). Crossref
  25. S. Takagi, Acta Crystallogr., 15, No. 12: 1311 (1962). Crossref
  26. S. Takagi, J. Phys. Soc. Japan., 26, No. 5: 1239 (1969). Crossref
  27. D. Taupin, Bull. Soc. Franc. Mineral. Crystallogr., 7, No. 87: 469 (1964).
  28. R. Zaus, J. Appl. Crystallogr., 26, No. 6: 801 (1993). Crossref
  29. Y. Kotsar, B. Doisneau, E. Bellet-Amalric, A. Das, E. Sarigiannidou, and E. Monroy, J. Appl. Phys., 110, No. 3: 033501 (2011). Crossref
  30. E. Bellet-Amalric, C. Adelmann, E. Sarigiannidou, J. L. Rouvière, G. Feuillet, E. Monroy, and B. Daudin, J. Appl. Phys., 95, No. 3: 1127 (2004). Crossref
  31. N. V. Safriuk, G. V. Stanchu, A. V. Kuchuk, V. P. Kladko, A. E. Belyaev, and V. F. Machulin, Semicond. Phys. Quantum Electron. Optoelectron., 16, No. 3: 265 (2013). Crossref
  32. S. R. Lee, D. D. Koleske, M. H. Crawford, and J. J. Wierer, J. Cryst. Growth, 355, No. 1: 63 (2012). Crossref
  33. P. F. Fewster, J. Appl. Crystallogr., 21, No. 5: 524 (1988). Crossref
  34. W. J. Bartels and W. Nijman, J. Cryst. Growth, 44, No. 5: 518 (1978). Crossref
  35. D. J. Wallis, D. Zhu, F. Oehler, S. P. Westwater, A. Pujol, and C. J. Humphreys, Semicond. Sci. Technol., 28, No. 9: 094006 (2013). Crossref
  36. S. Stepanov and R. Forrest, J. Appl. Crystallogr., 41, No. 5: 958 (2008). Crossref
  37. N. J. Ekins-Daukes, K. Kawaguchi, and J. Zhang, Cryst. Growth Des., 2, No. 4: 287 (2002). Crossref
  38. O. Liubchenko, V. Kladko, and Oy. Gudymenko, Semicond. Physics, Quantum Electron. Optoelectron., 20, No. 3: 355 (2017). Crossref