Structure of Vanadium Films on SiO$_2$(001), MgO(100), Al$_2$O$_3$(0001), SrTiO$_3$(100) Substrates and Features of Their Thermal Oxidation

A. K. Orlov$^{1,2}$, I. O. Kruhlov$^{1,2}$, S. M. Voloshko$^{1}$, I. E. Kotenko$^{1}$, S. I. Sidorenko$^{1}$, T. Ishikawa$^{2}$

$^{1}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{2}$RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan

Received: 27.04.2018. Download: PDF

The structures of thin V(25 nm)/SiO$_2$(001), V(25 nm)/MgO(100), V(25 nm)/Al$_2$O$_3$(0001), V(25 nm)/SrTiO$_3$(100) films on different monocrystalline substrates are studied in the initial state and under annealing up to 600°C in vacuum of 10$^{-3}$ Pa. Preferred orientation of grains along the [110] direction in the films on SrTiO$_3$(100) substrate with coherent-scattering area size of about 11 nm and lattice parameter of 3.024 Å that corresponds to the bulk state is revealed by using synchrotron radiation (RIKEN SPring-8 Center). The near-surface oxidation degree in the initial state is determined by the long-range influence of the transition-layer structure at the ‘thin film–substrate’ interface. This structure depends on both the crystal-structures’ types of thin film and substrate and the degree of mismatch between them. Oxidation is inhibited when the transition layer is amorphous. Oxidation at the initial stages of annealing also depends on initial structure of vanadium film. When the axis of texture is normal to the outer surface, longitudinal channels caused by grain boundaries and triple boundaries’ junctions become dominant pathways for accelerated diffusion of oxygen. When the temperature exceeds the threshold value of 350°C, the process of transformation of b.c.c. vanadium-crystal lattice into monoclinic one starts. A possibility of the ordered substitutional solid solution of oxygen atoms in vanadium lattice is discussed.

Key words: synchrotron radiation, thermal oxidation, thin films, nanocrystalline structure.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i06/0777.html

DOI: https://doi.org/10.15407/mfint.40.06.0777

PACS: 61.05.cf, 68.55.J-, 73.61.At, 81.16.Pr, 81.40.Ef, 81.65.Cf, 81.65.Mq

Citation: A. K. Orlov, I. O. Kruhlov, S. M. Voloshko, I. E. Kotenko, S. I. Sidorenko, and T. Ishikawa, Structure of Vanadium Films on SiO$_2$(001), MgO(100), Al$_2$O$_3$(0001), SrTiO$_3$(100) Substrates and Features of Their Thermal Oxidation, Metallofiz. Noveishie Tekhnol., 40, No. 6: 777—794 (2018) (in Ukrainian)


REFERENCES
  1. C. Lamsal and N. M. Ravindra, Spectroscopic Techniques for Security, Forensic and Environmental Applications (Eds. Y. Dwivedi, S. B. Rai, and J. P. Singh) (Kurukshetra: National Institute of Technology: 2014), Ch. 8.
  2. K. Takanezawa, K. Tajima, and K. Hashimoto, Applied Physics Letters, 93: 297 (2008). Crossref
  3. J. Li, B. D. Gauntt, J. Kulik, and E. C. Dickey, Microscopy and Microanalysis, 15: 1004 (2009). Crossref
  4. C. Ghosh, A. Singh, J. Basu, D. Ramachandran, and E. Mohandas, Materials Characterization, 124: 129 (2017). Crossref
  5. L. Chunwei, T. Xiubo, L. Tianwei, Q. Jianwei, Y. Jingjing, G. Chunzhi, and Y. Shiqin, Rare Metal Materials and Engineering, 42: 2437 (2013). Crossref
  6. M. Gutsche, H. Kraus, J. Jochum, B. Kemmather, and G. Gutekunst, Thin Solid Films, 248: 18 (1994). Crossref
  7. J. R. Chen, C. P. Sung, F. S. Yeh, Y. C. Liu, and C. C. Wang, J. Vacuum Science and Technology, 20: 804 (1982). Crossref
  8. G. Salomonsen, N. Norman, O. Lønsjø, and T. G. Finstad, J. Less Common Metals, 158: 251 (1990). Crossref
  9. A. Borodziuk-Kulpa, B. Stolecki, and C. Wesołowska, Thin Solid Films, 67: 21 (1980). Crossref
  10. S. S. Fouad, M. H. El-Fazary, A. A. El-Shazly, F. Sharaf, and K. M. Nassr, J. Mater. Sci., 21: 5843 (1991). Crossref
  11. M. Finazzi, F. Yubero, P. Bencok, F. Chevrier, K. Hricovini, F. Ciccacci, and G. Krill, J. Magnetism and Magnetic Materials, 165: 78 (1997). Crossref
  12. C. Binns, H. S. Derbyshire, S. C. Bayliss, and C. Norris, Phys. Rev. B, 45: 460 (1992). Crossref
  13. T. B. Massalski, Binary Alloy Phase Diagrams (Materials Park, Ohio: ASM Int.: 1990).
  14. A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides (Springer Science and Business Media: 2013).
  15. M. Gutsche, H. Kraus, J. Jochum, B. Kemmather, and G. Gutekunst, Thin Solid Films, 248: 18 (1994). Crossref
  16. https://www.azom.com/properties.aspx?ArticleID=1114
  17. https://www.azom.com/properties.aspx?ArticleID=52
  18. https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html
  19. F. W. Lytle, J. Appl. Phys., 35: 2212 (1964). Crossref
  20. https://www.azom.com/properties.aspx?ArticleID=54
  21. A. Benninghoven, Thin Solid Films, 39: 3 (1976). Crossref
  22. A. Benninghoven, Surf. Sci., 53: 596 (1975). Crossref
  23. E. M. Trukhanov, Poverkhnost'. Rentgenovskie, Sinkhrotronnye i Neytronnye Issledovaniya, 1: 43 (2010) (in Russian).
  24. R. W. G. Wyckoff, Crystal Structures, 1: 85 (1963).
  25. M. Gutsche, H. Kraus, J. Jochum, B. Kemmather, and G. Gutekunst, Thin Solid Films, 248: 18 (1994). Crossref
  26. U. Holzwarth and N. Gibson, Nature Nanotechnology, 6: 534 (2011). Crossref
  27. S. A. Firstov, N. A. Krapivka, M. A. Vasiliev, S. I. Sidorenko, and S. M. Voloshko, Powder Metallurgy and Metal Ceramics, 55: 458 (2016). Crossref
  28. S. P. Chenakin, V. T. Cherepin, A. L. Pivovarov, and M. A. Vasilev, phys. status solidi (a), 96: K21 (1986). Crossref
  29. V. T. Cherepin, Fresenius' Zeitschrift für Analytische Chemie, 335: 124 (1989). Crossref
  30. H. Düsterhöft and M. Riedel, Vacuum, 37: 157 (1987). Crossref
  31. J. R. Chen, C. P. Sung, F. S. Yeh, Y. C. Liu, C. C. Wang, J. Vacuum Science and Technology, 20: 804 (1982). Crossref
  32. P. Stender, Z. Balogh, and G. Schmitz, Ultramicroscopy, 111: 524 (2011). Crossref
  33. I. A. Ovid'ko and A. G. Sheynerman, Fizika Tverdogo Tela, 44: 1243 (2002) (in Russian).
  34. A. Borodziuk-Kulpa, B. Stolecki, and C. Wesołowska, Thin Solid Films, 67: 21 (1980). Crossref
  35. G. L. Steckel and C. J. Altstetter, Acta Metallurgica, 24: 1131 (1976). Crossref
  36. S. Kachi, T. Takada, and K. Kosuge, J. Physical Society of Japan, 18: 1839 (1963). Crossref
  37. A. D. Rata, A. R. Chezan, M. W. Haverkort, H. H. Hsieh, H. J. Lin, C. T. Chen, and T. Hibma, Phys. Rev. B, 69: 075404 (2004). Crossref
  38. B. D. Gauntt, E. C. Dickey, and M. W. Horn, J. Materials Research, 24: 1590 (2009). Crossref
  39. M. D. Banus, T. B. Reed, and A. J. Strauss, Phys. Rev. B, 5: 2775 (1972). Crossref
  40. T. M. Grichanovs'ka and I. Yu. Protsenko, Visnik Sums'kogo Derzhavnogo Universitetu. Seriya Fizika, Matematika, Mekhanika, 10: 41 (2004) (in Ukrainian).
  41. L. V. Odnodvorets, N. I. Shumakova, E. P. Tkach, and I. E. Protsenko, Zhurnal Nano- ta Elektronnoi Fizyky, 1: 29 (2009) (in Russian).
  42. D. W. Bruce, D. O'Hare, and R. I. Walton, Structure from Diffraction Methods: Inorganic Materials Series (John Wiley and Sons: 2014). Crossref
  43. A. K. Orlov, I. O. Kruhlov, O. V. Shamis, I. A. Vladymyrskyi, I. E. Kotenko, S. M. Voloshko, S. I. Sidorenko, T. Ebisu, K. Kato, H. Tajiri, O. Sakata, and T. Ishikawa, Vacuum, 150: 186 (2018). Crossref
  44. A. I. Gusev and D. A. Davydov, Pis'ma v Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, 86: 746 (2007) (in Russian).
  45. J. Li, B. D. Gauntt, J. Kulik, E. C. Dickey, Microscopy and Microanalysis, 15: 1004 (2009). Crossref
  46. K. R. Zhdanov, M. Yu. Kameneva, L. P. Kozeeva, and A. N. Lavrov, Fizika Tverdogo Tela, 58: 1522 (2016) (in Russian).
  47. V. G. Orlov, A. A. Bush, S. A. Ivanov, and V. V. Zhurov, Fizika Tverdogo Tela, 39: 865 (1997) (in Russian).