Structural Aspect of Formation of a Nanosystem of In/In$_{4}$Se$_{3}$ (100)

P. V. Galiy$^{1}$, P. Mazur$^{2}$, A. Ciszewski$^{2}$, T. M. Nenchuk$^{1}$, I. R. Yarovets’$^{1}$, O. R. Dveriy$^{3}$

$^{1}$Ivan Franko National University of Lviv, 1 Universytets’ka Str., UA-79000 Lviv, Ukraine
$^{2}$University of Wrocław, Institute of Experimental Physics, 9 Maxa Borna Plac, 50—204 Wrocław, Poland
$^{3}$Hetman Petro Sahaidachnyi National Army Academy, 32 Heroes of Maidan Str., 79012 Lviv, Ukraine

Received: 12.04.2018. Download: PDF

Self-assembled indium deposition-induced nanostructures are obtained on the UHV cleaved (100) surface of In$_4$Se$_3$ layered semiconductor crystals. The small indium-deposition rates and short deposition times are chosen to study growth orientation and origin of nanostructures observed by scanning tunnelling microscopy (STM) on the (100) surface of In$_4$Se$_3$ after indium deposition. The shape of these nanostructures strictly depends on the overstoichiometric indium concentration level in the melt during the crystal growth varying from 3$D$ islands for low concentration to elongated shapes, i.e., nanowires, in the case of highly-indium-doped crystals. High-resolution STM study determines the self-assembled quasi-periodical nanowires’ growth along $c$-axis of (100)In$_4$Se$_3$ substrate. The spatially resolved scanning tunnelling spectroscopy (STS) study revealed metallic nature of the surface of nanostructures grown on the semiconductor substrate. The growth mechanism of indium-deposited nanostructures is considered to be powered by anisotropic striated lattice structure of In$_4$Se$_3$ (100) surface with indium nucleiin concentration depending on the degree of overstoichiometric crystal-growth indium subsequently intercalated into the interlayer gap.

Key words: layered trichalcogenides, self-assembling nanostructures, nanowires, scanning tunnelling microscopy, scanning tunnelling spectroscopy.



PACS: 68.37.Ef,68.47.De,68.47.Fg,73.20.At,73.21.Hb,73.63.Nm,81.16.Dn,81.16.Rf

Citation: P. V. Galiy, P. Mazur, A. Ciszewski, T. M. Nenchuk, I. R. Yarovets’, and O. R. Dveriy, Structural Aspect of Formation of a Nanosystem of In/In$_{4}$Se$_{3}$ (100), Metallofiz. Noveishie Tekhnol., 40, No. 10: 1349—1358 (2018)

  1. W. R. McKinnon and R. R. Haering, Physical Mechanisms of Intercalation. Modern Aspects in Electrochemistry. Ch. 5 (Eds. R. E. White, J. O'M. Bockris, and B. E. Conway) (New York: Plenum Press: 1983), p. 235. Crossref
  2. P. V. Galiy, A. V. Musyanovych, and Ya. M. Fiyala, Physica E: Low-Dimensional Systems and Nanostructures, 35, Iss. 1: 88 (2006). Crossref
  3. G. M. Whitesides, J. K. Kriebel, and B. T. Mayers, Self-Assembly and Nanostructured Materials. Nanoscale Assembly. Nanostructure Science and Technology (Ed. W. T. S. Huck) (Boston, MA: Springer: 2005), p. 217.
  4. I. Horcas, R. Fernandez, J. M. Gomez-Rodríguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, Rev. Sci. Instrum., 78: 013705 (2007). Crossref
  5. U. Schwarz, H. Hillebrecht, H. J. Deiseroth, und R. Walter, Zeitschrift für Kristallogr.: 210, No. 5: 342 (1995) (in German). Crossref
  6. P. V. Galiy, T. M. Nenchuk, O. R. Dveriy, A. Ciszewski, P. Mazur, and S. Zuber, Physica E: Low-Dimensional Systems and Nanostructures: 41, No. 3: 465 (2009). Crossref
  7. P. V. Galiy, T. M. Nenchuk, O. R. Dveriy, A. Ciszewski, P. Mazur, and S. Zuber, Chemistry of Metals and Alloys, 4, Iss. 1/2: 1 (2011).
  8. M. Sznajder, K. Z. Rushchanskii, L. Yu. Kharkhalis, and D. M. Bercha, phys. status solidi (b), 243, Iss. 5: 592 (2006). Crossref
  9. D. M. Bercha, K. E. Glukhov, and M. Sznajder, Acta Physica Polonica A, 119, No. 5: 720 (2011). Crossref
  10. V. G. Dubrovskii, Nucleation Theory and Growth of Nanostructures (Berlin–Heidelberg: Springer-Verlag: 2014). Crossref