Структурний аспект формування наносистеми In/In$_{4}$Se$_{3}$ (100)

П. В. Галій$^{1}$, П. Мазур$^{2}$, А. Ціжевський$^{2}$, Т. М. Ненчук$^{1}$, І. Р. Яровець$^{1}$, О. Р. Дверій$^{3}$

$^{1}$Львівський національний університет імені Івана Франка, вул. Університетська, 1, 79000 Львів, Україна
$^{2}$Університет Вроцлава, Інститут експериментальної фізики, пл. Макса Борна, 9, 50-204 Вроцлав, Польща
$^{3}$Національна академія сухопутних військ імені гетьмана Петра Сагайдачного, вул. Героїв Майдану, 32, 79012 Львів, Україна

Отримано: 12.04.2018. Завантажити: PDF

Самоорганізовані індійові наноструктури одержано на надвисоковакуумній поверхні сколювання (100) напівпровідникового шаруватого кристалу In$_4$Se$_3$. Невеликі швидкості та тривалості напорошення індію вибиралися з метою дослідження ростової орієнтації та природи наноструктур на поверхні (100)In$_4$Se$_3$, які вивчали за допомогою сканувальної тунельної мікроскопії (СТМ). Форма цих наноструктур безпосередньо залежить від концентрації надстехіометричного індію в розтопі під час вирощування кристалу, змінюючись від тривимірних острівців за низької концентрації до лінійних форм, тобто нанодротів, у випадку сильно леґованих індієм кристалів. СТМ з високим розріжненням уможливлює встановити, що квазиперіодичні нанодроти ростуть вздовж осі $c$ кристалу In$_4$Se$_3$ на поверхні (100). За допомогою сканувальної тунельної спектроскопії з просторовим розріжненням встановлено металічну природу поверхневих наноструктур на напівпровідниковій підкладинці. Встановлено, що механізм росту напорошених наноструктур зумовлений борознистою структурою ґратниці на поверхні (100) кристалу In$_4$Se$_3$ з наявністю у ній зародків індію у концентрації, яка залежить від кількости надстехіометричного ростового індію, що інтеркалюється у міжшарову щілину.

Ключові слова: шаруваті трихалькогеніди, самоорганізовані наноструктури, нанодроти, сканувальна тунельна мікроскопія, сканувальна тунельна спектроскопія.

URL: http://mfint.imp.kiev.ua/ua/abstract/v40/i10/1349.html

PACS: 68.37.Ef,68.47.De,68.47.Fg,73.20.At,73.21.Hb,73.63.Nm,81.16.Dn,81.16.Rf


ЦИТОВАНА ЛІТЕРАТУРА
  1. W. R. McKinnon and R. R. Haering, Physical Mechanisms of Intercalation. Modern Aspects in Electrochemistry. Ch. 5 (Eds. R. E. White, J. O’M. Bockris, and B. E. Conway) (New York: Plenum Press: 1983), p. 235. Crossref
  2. P. V. Galiy, A. V. Musyanovych, and Ya. M. Fiyala, Physica E: Low-Dimensional Systems and Nanostructures, 35, Iss. 1: 88 (2006). Crossref
  3. G. M. Whitesides, J. K. Kriebel, and B. T. Mayers, Self-Assembly and Nanostructured Materials. Nanoscale Assembly. Nanostructure Science and Technology (Ed. W. T. S. Huck) (Boston, MA: Springer: 2005), p. 217.
  4. I. Horcas, R. Fernandez, J. M. Gomez-Rodríguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, Rev. Sci. Instrum., 78: 013705 (2007). Crossref
  5. U. Schwarz, H. Hillebrecht, H. J. Deiseroth, und R. Walter, Zeitschrift für Kristallogr.: 210, No. 5: 342 (1995) (in German). Crossref
  6. P. V. Galiy, T. M. Nenchuk, O. R. Dveriy, A. Ciszewski, P. Mazur, and S. Zuber, Physica E: Low-Dimensional Systems and Nanostructures: 41, No. 3: 465 (2009). Crossref
  7. P. V. Galiy, T. M. Nenchuk, O. R. Dveriy, A. Ciszewski, P. Mazur, and S. Zuber, Chemistry of Metals and Alloys, 4, Iss. 1/2: 1 (2011).
  8. M. Sznajder, K. Z. Rushchanskii, L. Yu. Kharkhalis, and D. M. Bercha, phys. status solidi (b), 243, Iss. 5: 592 (2006). Crossref
  9. D. M. Bercha, K. E. Glukhov, and M. Sznajder, Acta Physica Polonica A, 119, No. 5: 720 (2011). Crossref
  10. V. G. Dubrovskii, Nucleation Theory and Growth of Nanostructures (Berlin–Heidelberg: Springer-Verlag: 2014). Crossref