Структурный аспект формирования наносистемы In/In$_{4}$Se$_{3}$ (100)

П. В. Галий$^{1}$, П. Мазур$^{2}$, А. Цижевський$^{2}$, Т. М. Ненчук$^{1}$, І. Р. Яровец$^{1}$, О. Р. Дверий$^{3}$

$^{1}$Львовский национальный университет имени Ивана Франко, ул. Университетская, 1, 79000 Львов, Украина
$^{2}$Университет Вроцлава, Институт экспериментальной физики, пл. Макса Борна, 9, 50-204 Вроцлав, Польша
$^{3}$Национальная академия сухопутных войск имени гетмана Петра Сагайдачного, ул. Героев Майдана, 32, 79012, Украина

Получена: 12.04.2018. Скачать: PDF

Самоорганизованные индиевые наноструктуры получены на сверхвысоковакуумной поверхности скалывания (100) полупроводникового слоистого кристалла In$_4$Se$_3$. Небольшие скорости и длительности напыления индия использовались с целью исследования ростовой ориентации и природы наноструктур на поверхности (100)In$_4$Se$_3$, которые изучались с помощью сканирующей туннельной микроскопии (СТМ). Форма этих наноструктур непосредственно зависит от концентрации сверхстехиометрического индия в расплаве во время роста кристалла, изменяясь от трёхмерных островков при низкой концентрации до линейных форм, т.е. нанопроводов, в случае сильно легированных индием кристаллов. СТМ з высоким разрешением позволяет установить, что квазипериодические нанопровода растут вдоль оси $c$ кристалла In$_4$Se$_3$ на поверхности (100). С помощью сканирующей туннельной спектроскопии с пространственным разрешением установлена металлическая природа поверхностных наноструктур на полупроводниковой подкладке. Установлено, что механизм роста напылённых наноструктур обусловлен бороздчатой структурой решётки на поверхности (100) кристалла In$_4$Se$_3$ с наличием в ней зародышей индия в концентрации, зависящей от количества сверхстехиометрического ростового индия, который интеркалируется в межслоевую щель.

Ключевые слова: слоистые трихалькогениды, самоорганизованные наноструктуры, нанопровода, сканирующая туннельная микроскопия, сканирующая туннельная спектроскопия.

URL: http://mfint.imp.kiev.ua/ru/abstract/v40/i10/1349.html

PACS: 68.37.Ef,68.47.De,68.47.Fg,73.20.At,73.21.Hb,73.63.Nm,81.16.Dn,81.16.Rf


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. W. R. McKinnon and R. R. Haering, Physical Mechanisms of Intercalation. Modern Aspects in Electrochemistry. Ch. 5 (Eds. R. E. White, J. O’M. Bockris, and B. E. Conway) (New York: Plenum Press: 1983), p. 235. Crossref
  2. P. V. Galiy, A. V. Musyanovych, and Ya. M. Fiyala, Physica E: Low-Dimensional Systems and Nanostructures, 35, Iss. 1: 88 (2006). Crossref
  3. G. M. Whitesides, J. K. Kriebel, and B. T. Mayers, Self-Assembly and Nanostructured Materials. Nanoscale Assembly. Nanostructure Science and Technology (Ed. W. T. S. Huck) (Boston, MA: Springer: 2005), p. 217.
  4. I. Horcas, R. Fernandez, J. M. Gomez-Rodríguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, Rev. Sci. Instrum., 78: 013705 (2007). Crossref
  5. U. Schwarz, H. Hillebrecht, H. J. Deiseroth, und R. Walter, Zeitschrift für Kristallogr.: 210, No. 5: 342 (1995) (in German). Crossref
  6. P. V. Galiy, T. M. Nenchuk, O. R. Dveriy, A. Ciszewski, P. Mazur, and S. Zuber, Physica E: Low-Dimensional Systems and Nanostructures: 41, No. 3: 465 (2009). Crossref
  7. P. V. Galiy, T. M. Nenchuk, O. R. Dveriy, A. Ciszewski, P. Mazur, and S. Zuber, Chemistry of Metals and Alloys, 4, Iss. 1/2: 1 (2011).
  8. M. Sznajder, K. Z. Rushchanskii, L. Yu. Kharkhalis, and D. M. Bercha, phys. status solidi (b), 243, Iss. 5: 592 (2006). Crossref
  9. D. M. Bercha, K. E. Glukhov, and M. Sznajder, Acta Physica Polonica A, 119, No. 5: 720 (2011). Crossref
  10. V. G. Dubrovskii, Nucleation Theory and Growth of Nanostructures (Berlin–Heidelberg: Springer-Verlag: 2014). Crossref