Intelligent Precise Goniometric System of Analysis of Spectral Distribution Intensities for Definition of Chemical Composition of Metal-Containing Substances

I. Cherepanska$^{1}$, O. Bezvesilna$^{2}$, Yu. Koval$^{3}$, A. Sazonov$^{1}$

$^{1}$Zhytomyr State Technological University, 103 Chudnivska Str., UA-10005 Zhytomyr, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{3}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 10.12.2018. Download: PDF

The article dedicated to urgent task—definition of chemical composition of metal-containing substances. The new precise intelligent goniometric system, which contains laser goniometer, CMOS image sensor, and artificial neural network, is proposed. This system combines the advantages such as safety for humans and environment, high productivity, usage simplicity, universality, automated processing of the measuring data.

Key words: laser goniometer, chemical composition, spectral distribution, artificial neural network, saturation current, wavelength of light, photocell sensitivity.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i02/0263.html

DOI: https://doi.org/10.15407/mfint.41.02.0263

PACS: 07.05.Mh, 07.60.-j, 78.30.Er, 78.40.Kc, 81.70.Jb, 82.80.-d

Citation: I. Cherepanska, O. Bezvesilna, Yu. Koval, and A. Sazonov, Intelligent Precise Goniometric System of Analysis of Spectral Distribution Intensities for Definition of Chemical Composition of Metal-Containing Substances, Metallofiz. Noveishie Tekhnol., 41, No. 2: 263—278 (2019)


REFERENCES
  1. V. A. Purtskhvanidze, Gistokhimicheskie i Morfologicheskie Osobennosti Khrustalika Gidrobiontov pri Deystvii Lazernogo i Rentgenovskogo Oblucheniya (Disser. … for the Degree of Cand. Biolog. Sci.) (Moscow: Moscow State Technol. Academia: 2003) (in Russian).
  2. R. I. Filyaevskikh and M. A. Gan, Videotsifrovaya Sistema Opticheskogo Refraktometra (in Russian), http://docplayer.ru/32750438-Videocifrovaya-sistema-opticheskogo-refraktometra.html
  3. K. Rehan, I. Rehan, S. Sultana, M. Zubair Khan, Z. Farooq, A. Mateen, and M. Humayun, Int. J. Spectrosc., 2017: 1614654 (2017). Crossref
  4. F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, Geoderma, 106, Iss. 1–2: 45 (2002). Crossref
  5. P. Diwakar, P. Kulkarni, and M. E. Birch, Aerosol Sci. Technol., 46, Iss. 3: 316 (2012). Crossref
  6. M. Achouri, T. Baba-Hamed, S. A. Beldjilali, and A. Belasri, Plasma Phys. Rep., 41, Iss. 9: 758 (2015). Crossref
  7. Programmnoe Obespechenie dlya Spektrometrov (in Russian), www.directindustry.com.ru/proizvoditel-promyshlennyj/programmnoe-obespecenie-spektrometrov-109161.html
  8. Programmnoe Obespechenie SATO (in Russian), www.sp-an.com/software.htm
  9. Optiko-Emissionnyy Spektrometr ARL 4460 (in Russian), https://thermotechno.ru/catalog/143/396/.
  10. Atomnye Optiko-Emissionnye Spektrometry (in Russian), www.iskroline.ru/spectrometers/
  11. Spektrofotometr ULAB 102 (325–1000 nm, Programmiruemyy) (in Russian), https://prom.ua/p99301350-spektrofotometr-ulab-102.html
  12. I. Yu. Cherepanska, O. M. Bezvesilna, and A. Yu. Sazonov, Shtuchni Neyronni Merezhi pry Vyrishenni Zadach Tehnologichnoyi Pidgotovky Gnuchkogo Vyrobnytstva [Artificial Neural Networks in Solving Problems of Technological Preparation of Flexible Manufacturing] (Kyiv: NTUU 'Igor Sikorsky KPI': 2018) (in Ukrainian).
  13. I. Cherepanska, E. Bezvesilna, and A. Sazonov, Proc. of the Int. Conf. 'Advances in Systems, Control and Information Technology' (May 20–21, 2016, Warsaw, Poland) (Warsaw: Springer Int. Publ.: 2017), p. 43.
  14. C. L. Bennett, C. Odom, and M. Ben-Asher, 29th Southern Biomedical Eng. Conf. 'Knee Angle Estimation Based on IMU Data and Artificial Neural Networks' (May 3–5, 2013, Miami, FL, USA) (Miami: IEEE: 2013). Crossref
  15. N. A. Shrirao, N. P. Reddy, and D. R. Kosuri, BioMedical Engineering OnLine, 8: 2 (2009). Crossref
  16. A. D. Angel, M. Glavic, and L. Wehenkel, Using Artificial Neural Networks to Estimate Rotor Angles and Speeds from Phasor Measurements, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.7413&rep=rep1&type=pdf
  17. J. Zhang, H. Li, L. Lv, and Y. Zhang, Int. J. Biomedical Imaging, 2017, Article ID 9083916 (2017). Crossref
  18. M. N. Libenson, E. B. Yakovlev, and G. D. Shandybina, Vzaimodeystvie Lazernogo Izlucheniya s Veshchestvom (Silovaya Optika) [Interaction of Laser Radiation with a Substance (Power Optics)] (Saint Petersburg: NIU ITMO: 2008) (in Russian).