Nanorelief of Cu and Au Layers after Their Thermal Deposition on the InSe and GaSe Single Crystals Surfaces

L. І. Karbivska, V. L. Karbivskii, V. A. Artemyuk, Z. D. Kovalyuk, О. Ya. Kuznetsova, S. S. Smolyak, A. I. Sobolev, V. V. Stonis

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 28.12.2018; final version - 04.02.2019. Download: PDF

As shown, the density of electronic states curves obtained experimentally by the method of tunnelling spectroscopy and calculated by the DFT method are in satisfactory agreement. The band gap of the atomically clean surface of an InSe (0001) single crystal measured by the method of tunnelling spectroscopy demonstrates a deviation of $\sim$ 0.2 eV from other methods ($\sim$ 1.4 eV against $\sim$ 1.2 eV). At low temperatures, intense formation of Shockley’s surface energy levels is observed. Formation mechanisms of copper and gold nanorelief on Van der Waals surfaces of semiconductor single crystals are investigated by the methods of high-resolution scanning tunnelling microscopy and DFT (Wien2k). Vacuum thermal deposition of Cu and Au (without cooling the sample and inert gases) on the surface of an InSe (0001) single crystal at the same conditions demonstrates different deposition mechanisms from the atomic metal gas phase. Copper is characterized by monomodal variation in cluster sizes, while in the case for gold a monolayer flake-like structure is formed. A small influence of the interface on geometry and symmetry of the nanostructures of copper and gold is established. The processes of formation of copper and gold nanostructures at mentioned conditions are badly described by the known growth mechanisms.

Key words: monolayers of gold and copper, metal clusters, thermal deposition, nanorelief, scanning tunnelling microscopy.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i03/0297.html

DOI: https://doi.org/10.15407/mfint.41.03.0297

PACS: 68.35.bd, 68.35.bt, 68.37.Ef, 68.43.Hn, 68.47.De, 68.55.J-, 73.20.At

Citation: L. І. Karbivska, V. L. Karbivskii, V. A. Artemyuk, Z. D. Kovalyuk, О. Ya. Kuznetsova, S. S. Smolyak, A. I. Sobolev, and V. V. Stonis, Nanorelief of Cu and Au Layers after Their Thermal Deposition on the InSe and GaSe Single Crystals Surfaces, Metallofiz. Noveishie Tekhnol., 41, No. 3: 297—311 (2019) (in Russian)


REFERENCES
  1. H. Liu, Y. F. Zhang, D. Y. Wang, M. H. Pan, J. F. Jia, and Q. K. Xue, Surf. Sci., 571: 5 (2004). Crossref
  2. E. Bauer, Z. Kristallogr., 110: 372 (1958). Crossref
  3. A. R. Smith, K.-J. Chao, Q. Niu, and C.-K. Shih, Science, 273: 226 (1996). Crossref
  4. D. A. Evans, M. Alonso, R. Cimino, and K. Horn, Phys. Rev. Lett., 70: 3483 (1993). Crossref
  5. Z. Y. Zhang, Q. Niu, and C.-K. Shih, Phys. Rev. Lett., 80: 5381 (1998). Crossref
  6. G. Yang, Y. Zhou, H. Long, Y. Li, and Y. Yang, Thin Solid Films, 515, Iss. 20-21: 7926 (2007). Crossref
  7. M. Rai, A. Yadav, and A. Gade, Biotech. Adv., 27, Iss. 1: 76 (2009). Crossref
  8. R. M. Tilaki, A. Irajizad, and S. M. Mahdavi, Appl. Phys. A, 84, Iss. 1-2: 215 (2006). Crossref
  9. G. Yang, D. Guan, W. Wang, W. Wu, and Z. Chen, Opt. Mat., 25, Iss. 4: 439 (2004). Crossref
  10. H.-J. Lee, S.-Y. Yeo, and S.-H. Jeong, J. Mat. Sci., 38: 2199 (2003). Crossref
  11. S. Lei, F. Wen, L. Ge, S. Najmaei, A. George, Y. Gong, W. Gao, Z. Jin, B. Li, J. Lou, J. Kono, R. Vajtai, P. Ajayan, and N. J. Halas, Nano Lett., 15: 3048 (2015). Crossref