Analysis of Moiré X-Ray Images of Deformed Crystals Using Radial Distribution of the Fourier Energy Spectrum

S. V. Balovsyak, S. M. Novikov, I. M. Fodchuk, I. V. Yaremchuk

Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubynsky Str., UA-58012 Chernivtsi, Ukraine

Received: 11.10.2018. Download: PDF

The influence of the magnitude of evenly distributed local concentrated forces, which act on the entrance surface of LLL-interferometer analyzer, on the formation of moiré pattern is investigated. The dependence of the intensity distribution of the Fourier energy spectrum of the moiré pattern on the magnitude of the concentrated forces is shown. The dependence between the magnitude of local forces and the average radial spatial frequency of radial distribution for the energy spectrum of moiré pattern is established, which allows us to calculate the values of deformations of crystals on the basis of experimental moiré pattern.

Key words: LLL-interferometer, moiré stripes, concentrated force, deformation field, Fourier energy spectrum.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i03/0389.html

DOI: https://doi.org/10.15407/mfint.41.03.0389

PACS: 07.60.Ly, 41.50.+h, 42.30.Ms, 61.05.cp, 61.72.Dd, 87.59.-e

Citation: S. V. Balovsyak, S. M. Novikov, I. M. Fodchuk, and I. V. Yaremchuk, Analysis of Moiré X-Ray Images of Deformed Crystals Using Radial Distribution of the Fourier Energy Spectrum, Metallofiz. Noveishie Tekhnol., 41, No. 3: 389—402 (2019) (in Russian)


REFERENCES
  1. U. Bonse and M. Hart, Appl. Phys. Lett., 6, No. 8: 155 (1965). Crossref
  2. A. Momose, T. Takeda, and Y. Itai, Jpn. J. Appl. Phys., 11, No. 11: 2303 (2003).
  3. U. Bonse, W. Graeff, and G. Materlik, Revue De Physique Appliquée, 11: 83 (1976). Crossref
  4. M. Ohler, S. Köhler, and J. Härtwig, Acta Cryst. A, 55: 423 (1999). Crossref
  5. A. Momose, S. Kawamoto, and I. Koyama, Jpn. J. Appl. Phys., 42: 866 (2003). Crossref
  6. R. Gevers, Phil. Mag., 7, No. 82: 1681 (1962). Crossref
  7. G. Cristiansen, L. Gerward, and A. Lindegaart, J. Appl. Cryst., 4: 370 (1971). Crossref
  8. M. Hart, Phil. Mag., 26, No. 4: 821 (1972). Crossref
  9. R. D. Deslettes, A. Henins, H. Bowman, and R. Schoonover, Phys. Rev. Lett., 33: 463 (1974). Crossref
  10. N. D. Raransky, V. P. Shafranyuk, and I. M. Fodchuk, Metallofizika, 7, No. 5: 63 (1985) (in Russian).
  11. N. D. Raransky, I. M. Fodchuk, V. N. Sergeev, O. G. Gimchinskiy et al., Metallofizika, 15, No. 2: 72 (1993) (in Russian).
  12. N. D. Raransky, Ja. M. Struk, I. M. Fodchuk, V. P. Shafranuk, and A. N. Raransky, Proc. SPIE, 2647: 457 (1995).
  13. I. M. Fodchuk, N. D. Raransky, and Ya. M. Struk, Metallofiz. Noveishie Tekhnol., 24, No. 5: 617 (2002) (in Russian).
  14. I. M. Fodchuk, N. D. Raransky, and Ya. M. Struk, Ukrayins'kyy Fizychnyy Zhurnal, 47, No. 11: 1057 (2002) (in Russian).
  15. I. M. Fodchuk and M. D. Raransky, J. Phys. D: Appl. Phys., 36: A55 (2003). Crossref
  16. I. M. Fodchuk, S. M. Novikov, and I. V. Yaremchuk, Appl. Optics, 55, No. 12: B120 (2016). Crossref
  17. I. M. Fodchuk, S. M. Novikov, and I. V. Yaremchuk, Metallofiz. Noveishie Tekhnol., 38, No. 3: 389 (2016) (in Russian). Crossref
  18. A. Authier, Dynamical Theory of X-Ray Diffraction (Oxford: Science Publications: 2001).
  19. R. Gonzalez and R. Woods, Tsifrovaya Obrabotka Izobrazheniy [Digital Image Processing] (Moscow: Tekhnosfera: 2005) (in Russian).
  20. R. Gonzalez, R. Woods, and S. Eddins, Tsifrovaya Obrabotka Izobrazheniy v Srede MatLab [MatLab Digital Image Processing] (Moscow: Tekhnosfera: 2006) (in Russian).
  21. R. Gonzalez and R. Woods, Digital Image Processing, 2nd Edition, (Prentice Hall, Upper Saddle River: 2002).
  22. S. Thonhpanja, A. Phinyomark, P. Phukpattaranont, and C. Limsakul, Electronika ir Elektrotechnika, 19, No. 3: 51 (2013).
  23. S. Takagi, J. Phys. Soc. Jpn., 26, No. 5: 1239 (1969). Crossref
  24. A. Lyav, Matematicheskaya Teoriya Uprugosti [Mathematical Theory of Elasticity] (Moscow: Fizmatgiz: 1936) (in Russian).