Two Remarks on Wagner Integrated Diffusion Coefficient

Andriy M. Gusak, Nadiia Storozhuk

Bohdan Khmelnytsky National University of Cherkasy, 81 Shevchenko Blvd., UA-18031 Cherkasy, Ukraine

Received: 20.02.2019. Download: PDF

Integrated interdiffusion coefficient, introduced by Carl Wagner in 1969, is revisited. First, it is applied for the whole diffusion zone, consisting of solid solutions and/or layers of intermediate compounds. We demonstrate, for the first time, that the Wagner coefficient satisfies the simple additive rule: the total squared inter-penetration width is proportional just to the sum of all Wagner coefficients of all intermediate phases of the system. Second, we check the applicability of Wagner coefficients in the atomistic-scale modelling of reactive diffusion. Checking is done for the growth of intermediate compound AB with BCC lattice.

Key words: diffusion, reaction, Wagner diffusion coefficient, parabolic Boltzmann–Matano substitution, stochastic kinetic mean field method.



PACS: 64.60.De, 64.60.Ej, 66.30.Ny, 66.30.Pa,, 81.30.Hd

Citation: Andriy M. Gusak and Nadiia Storozhuk, Two Remarks on Wagner Integrated Diffusion Coefficient, Metallofiz. Noveishie Tekhnol., 41, No. 5: 583—593 (2019)

  1. C. Wagner, Acta Metallurgica, 1, Iss. 2: 99 (1969). Crossref
  2. F. J. J. Van Loo, Prog. Solid State Chem., 20(1): 47 (1990). Crossref
  3. A. M. Gusak and M. V. Yarmolenko, J. Appl. Phys., 73(10): 4881 (1993). Crossref
  4. F. J. J. Van Loo, M. R. Rijnders, K. J. Rönkä, J. H. Gülpen, and A. A. Kodentsov, Solid State Ionics, 95, Iss. 1-2: 95 (1997). Crossref
  5. A. M. Gusak, T. V. Zaporozhets, Y. O. Lyashenko, S. V. Kornienko, M. O. Pasichnyy, and A. S. Shirinyan, Diffusion-Controlled Solid-State Reactions: in Alloys, Thin-Films, and Nanosystems (New Jersey: John Wiley & Sons: 2010). Crossref
  6. J. F. Li, P. A. Agyakwa, and C. M. Johnson, Intermetallics, 40: 50 (2013). Crossref
  7. K. P. Gurov, B. A. Kartashkin, and Yu E. Ugaste, Vzaimnaya Diffuziya v Mnogofaznykh Metallicheskikh Sistemakh [Interdiffusion in multiphase metallic systems] (Moscow: Nauka: 1981) (in Russian).
  8. G. Martin, Phys. Rev. B, 41(4): 2279 (1990). Crossref
  9. Z. Erdélyi, M. Sladecek, L. M. Stadler, I. Zizak, G. A. Langer, M. Kis-Varga, and B. Sepiol, Science, 306 (5703): 1913 (2004). Crossref
  10. Z. Erdélyi, I. A. Szabó, and D. L. Beke, Phys. Rev. Lett., 89(16): 165901 (2002). Crossref
  11. D. L. Beke and Z. Erdélyi, Phys. Rev. B, 73: 035426 (2006). Crossref
  12. N. V. Storozhuk, K. V. Sopiga, and A. M. Gusak, Philos. Mag., 93(16): 1999 (2013). Crossref
  13. Z. Erdélyi, M. Pasichnyy, V. Bezpalchuk, J. J. Tomán, B. Gajdics, and A. M. Gusak, Computer Phys. Communication, 204: 31 (2016). Crossref
  14. V. M. Bezpalchuk, R. Kozubski, and A. M. Gusak, Prog. Phys. Met., 18, No. 3: 205 (2017). Crossref
  15. V. M. Bezpalchuk, M. O. Pasichnyy, and A. M. Gusak, Metallofiz. Noveishie Tekhnol., 38, No. 9: 1135 (2016) (in Ukrainian). Crossref
  16. Z. Erdélyi, D. L. Beke, and A. Taranovskyy, Appl. Phys. Lett., 92(13): 133110 (2008). Crossref