Effect of Sputtering Power on Optoelectronic Properties of Iron-Doped Indium Saving Indium-Tin Oxide Thin Films

M. Ohtsuka$^{1}$, R. Sergiienko$^{2}$, S. Petrovska$^{3}$, B. Ilkiv$^{3}$, T. Nakamura$^{1}$

$^{1}$Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2 Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi 980-0812, Japan
$^{2}$Physico-Technological Institute of Metals and Alloys, NAS of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 22.10.2018; final version - 12.02.2019. Download: PDF

Iron-doped indium-tin oxide (ITO) thin films with reduced to 50% mass indium oxide content are deposited onto glass substrates preheated at 523 K by co-sputtering of ITO and Fe$_2$O$_3$ targets in mixed argon-oxygen atmosphere. The influence of different radio frequency (RF) plasma power for deposition of Fe$_2$O$_3$ target on the electrical, optical, structural, and morphological properties of the films is investigated by means of four point probe, Ultraviolet–Visible–Infrared (UV–Vis–IR) spectroscopy, X-ray diffraction and atomic force microscopy methods. The volume resistivity of 930 $\mu\Omega\cdot$cm and transmittance over 85% are obtained for thin films sputtered under optimum conditions. Iron doping results in significant improvement in films transmittance and increasing the crystallization temperature of ITO thin films.

Key words: iron-doped indium-tin oxide, electrical properties, optical properties, magnetron direct current sputtering, radio frequency deposition.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i07/0941.html

DOI: https://doi.org/10.15407/mfint.41.07.0941

PACS: 61.05.cp, 68.37.Ps, 68.55.J-, 73.61.At, 78.66.Bz, 81.15.Cd

Citation: M. Ohtsuka, R. Sergiienko, S. Petrovska, B. Ilkiv, and T. Nakamura, Effect of Sputtering Power on Optoelectronic Properties of Iron-Doped Indium Saving Indium-Tin Oxide Thin Films, Metallofiz. Noveishie Tekhnol., 41, No. 7: 941—952 (2019)

  1. K. P. Sibin, G. Srinivas, H. D. Shashikala, A. Dey, N. Sridhara, A. K. Sharma, and H. C. Barshilia, Sol. Energy Mater. Sol. Cells, 145, Iss. 4, Part 3: 10787 (2018). Crossref
  2. Z. Meng, H. Peng, C. Wu, C. Qiu, K. K. Li, M. Wong, and H. S. Kwok, J. Soc. Inform. Display, 12: 113 (2004). Crossref
  3. C. Hengst, S. B. Menzel, G. K. Rane, V. Smirnov, K. Wilken, B. Leszczynska, D. Fischer, and N. Prager, Materials, 10: 245 (2017). Crossref
  4. O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, J. Phys. D: Appl. Phys., 43, No. 5: 055402-1 (2010). Crossref
  5. Z. Ghorannevis, E. Akbarnejad, and M. Ghoranneviss, J. Theor. Appl. Phys., 9, Iss. 4: 285 (2015). Crossref
  6. Sh.-Ch. Her and Ch.-F. Chang, J. Appl. Biomater. Funct. Mater., 15, Iss. 2: 170 (2017). Crossref
  7. T. Minami, Y. Takeda, S. Takata, and T. Kakumu, Thin Solid Films, 308-309: 13 (1997). Crossref
  8. T. Minami, T. Miyata, and T. Yamamoto, Surf. Coat. Tech., 108-109: 583 (1998). Crossref
  9. T. Minami, T. Kakumu, K. Shimokawa, and S. Takata, Thin Solid Films, 317, Iss. 1-2: 318 (1998). Crossref
  10. L. Voisin, M. Ohtsuka, S. Petrovska, R. Sergiienko, and T. Nakamura, Optik, 156: 728 (2018). Crossref
  11. S. Li, X. Qiao, and J. Chen, Mater. Chem. Phys., 98: 144 (2006). Crossref
  12. L. Voisin, M. Ohtsuka, and T. Nakamura, Mater. Trans., 51, Iss. 3: 503 (2010). Crossref
  13. M. Ohtsuka, R. Sergiienko, S. Petrovska, B. Ilkiv, and T. Nakamura, Optik, 179: 19 (2019). Crossref
  14. H. A. Mohamed, J. Phys. D Appl. Phys., 40, No. 14: 4234 (2007). Crossref
  15. W. J. Heward and D. J. Swenson, J. Mater. Sci., 42, Iss. 17: 7135 (2007). Crossref
  16. N. Nadaud, M. Nanot, J. Jové, and T. Roisnel, Key Eng. Mater., 132-136: 1373 (1997). Crossref
  17. L. Xu and X. Li, J. Cryst. Growth, 312, Iss. 6: 851 (2010). Crossref
  18. F. Gao, X. Y. Liu, L. Y. Zheng, M. X. Li, Y. M. Bai, and J. Xie, J. Cryst. Growth, 371: 126 (2013). Crossref
  19. J. F. Moulder, W. E. Stickle, P. E. Sobol, and K. E. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Minnesota, Perkin-Elmer Corporation: 1992).