Integral Indicators of Change of Drilling Column Vibration—Criterion for Assessing of Roller Cone Bit Wear

V. M. Moisyshyn$^{1}$, M. V. Lyskanych$^{1}$, L. V. Borysevych$^{2}$, N. B. Kolych$^{3}$, R. A. Zhovniruk$^{1}$

$^{1}$Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Str., UA-76019 Ivano-Frankivsk, Ukraine
$^{2}$Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., UA-76018 Ivano-Frankivsk, Ukraine
$^{3}$National University of Life and Environmental Sciences of Ukraine, 15 Heroiv Oborony Str., UA-03041 Kyiv, Ukraine

Received: 02.04.2019. Download: PDF

According to results of industrial testing of drilling rigs of Public Joint-Stock Company ‘Ukrnafta’ and State-Owned Enterprise ‘Ukrhazvydobuvannya’ it is established that with the increase of the drill, which characterizes the degree of wear of the chip bit, there is an increase in the power (dispersion) of the process of changing the vibration velocity and vibration acceleration of the swivel for all the layouts of the bottom of the drill string. Between the standards of vibration velocity $\sigma_V$ and vibration acceleration $\sigma_W$ and propagation on the bit $H_{\textbf{дол}}$, empirical correlation dependences $\sigma_V$ = $f(H_{\textbf{дол}}$) and $\sigma_W$ = $f(H_{\textbf{дол}}$) are determined, their probability of existence is within the range of 0.9–0.95. Based on these dependences, one can establish the correlation between the bulk and weight wear of the bit on the one hand and the change in the vibration velocity or vibration acceleration of the swivel of the drill string on the other hand, which will allow us to develop an optimization model for minimizing the cost of drilling a well with full utilization of the chisel bit.

Key words: vibration velocity and vibration acceleration of the swivel of drilling column, the law of probability distribution of the random process, dispersion, standard, layout of bottom of drilling column (LBDC), perpendicular shock absorber, statistical nonparametric hypothesis.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i08/1087.html

DOI: https://doi.org/10.15407/mfint.41.08.1087

PACS: 62.20.Qp, 62.25.Mn, 62.30.+d, 81.40.Pq, 89.20.Bb, 89.20.Kk

Citation: V. M. Moisyshyn, M. V. Lyskanych, L. V. Borysevych, N. B. Kolych, and R. A. Zhovniruk, Integral Indicators of Change of Drilling Column Vibration—Criterion for Assessing of Roller Cone Bit Wear, Metallofiz. Noveishie Tekhnol., 41, No. 8: 1087—1102 (2019) (in Ukrainian)


REFERENCES
  1. G. N. Semenov, Ya. R. Kohuch, Ya. V. Kurovec, and M. M. Dranchuk, Avtomatyzatsiya Tekhnologichnykh Protsesiv u Naftoviy ta Gazoviy Promyslovosti (Ivano-Frankivsk: IFNTUNH: 2009) (in Ukrainian).
  2. K. Levchuk, SOCAR Proceedings, No. 2: 23 (2017) (in Russian). Crossref
  3. V. M. Moisyshyn, B. I. Smaha, and R. A. Zhovniruk, Prykarpatskyy Visnyk NTSh. Chyslo, 45, No. 1: 170 (2018) (in Ukrainian).
  4. E. S. Venttsel, Teoriya Veroyatnostey (Moscow: Nauka: 1969) (in Russian).
  5. R. Menli, Analiz i Obrabotka Zapisey Kolebaniy (Ed. V. K. Zhytomirskiy) (Moscow: Mashynostroenie: 1972) (in Russian).
  6. E. Shryufer, Obrabotka Signalov: Tsyfrovaya Obrabotka Diskretizirovanykh Signalov (Kyiv: Lybid: 1995) (in Russian).
  7. Program 'Vyznachennya Vydu Empirychnoyi Zalezhnosti Metodom Naymenshykh Kvadrativ', https://uk.wikipedia.org/wiki
  8. K. G. Levchuk, Metallofiz. Noveishie Tekhnol., 40, No. 1: 45 (2018) (in Ukrainian). Crossref