Phase Diagrams of Uranium and Its Compounds. II. ‘Orbital Glass’ (Galois Groups), Magnetoelectrical Effects

O. I. Mitsek, V. M. Pushkar

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 26.02.2019. Download: PDF

The order of angle moments $\mathbf{J}_\mathbf{r}$ in metallic uranium can be appeared due to ordering of pairs of orbital moments $\mathbf{L}_\mathbf{r}$ in ‘orbital glass’ form. Representation of the many-electron operator spinors (MEOS) and their Fourier images (chemical (covalent) bond fluctuations (CBF)) give ‘glass’ parameter ${P_3}(T)=\left\langle{{(L_r^z)}^2}\right\rangle$ as CBF functional and function of temperature $T$. Metallic uranium region ($C_3$) contains $N_3$ elements of Galois groups (GG–G$_3$) in form of pairs of uranium ions sites ($\mathbf{r}$–$\mathbf{R}$) and their moments ($\mathbf{L}_\mathbf{r}\uparrow\downarrow\mathbf{L}_\mathbf{R}$). Orientation of $P_3$ along O$z$ under deformation $u_{33}$ determines the contribution of magnetic susceptibility $\chi_{zz}\sim{P_3}(T)$. Magnetoelectrical resistance $\Delta{R}_{33}\sim{P_3}(T)$. Covalent bond 6$d$–6$d$ increases melting temperature by $\Delta{T_L}\sim10^2$ K for U and Cm (which have one 6$d$ electron). Anomalous Hall effect $R_{13}(P_1, P_3)$ is caused by CBF as well as the residual electrical resistance $R_0$ of transition metals, in particular U.

Key words: order of pairs of orbital moments $\mathbf{L}_\mathbf{r}$ (Galois group, ‘orbital glass’), magnetic susceptibility, magnetoresistance, Hall effect.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i09/1127.html

DOI: https://doi.org/10.15407/mfint.41.09.1127

PACS: 61.50.Ks, 71.10.-w, 71.20.Be, 72.20.Dp, 72.20.My, 75.10.Dg, 75.30.Mb

Citation: O. I. Mitsek and V. M. Pushkar, Phase Diagrams of Uranium and Its Compounds. II. ‘Orbital Glass’ (Galois Groups), Magnetoelectrical Effects, Metallofiz. Noveishie Tekhnol., 41, No. 9: 1127—1142 (2019) (in Russian)


REFERENCES
  1. O. I. Mitsek and V. M. Pushkar, Metallofiz. Noveishie Tekhnol., 41, No. 3: 279 (2019) (in Russian). Crossref
  2. O. I. Mitsek and V. M. Pushkar, Metallofiz. Noveishie Tekhnol., 37, No. 4: 433 (2015) (in Russian). Crossref
  3. S. V.Vonsovskiy, Magnetism (Moscow: Nauka: 1971) (in Russian).
  4. Yu. P. Irkhin and V. Yu.Irkhin, Elektronnoe Stroenie i Fizicheskie Svoystva Perekhodnykh Metallov [Electron Structure and Physical Properties of Transition Metals) (Sverdlovsk: Ural State University: 1989) (in Russian).
  5. J. B. Listing, Predvaritelnye Issledovaniya po Topologii [Preliminary Research on Topology] (Moscow: Gos. Tekniko-Teor. Izdat.: 1932) (in Russian).
  6. N. Bourbaki, Obshchaya Topologiya [General Topology] (Moscow: Gos. Izdat. Fiz.-Mat. Lit.: 1959) (in Russian).
  7. N. Chebotarev, Osnovy Teorii Galua [The Principles of Galois Theory] (Moscow: Gos. Tekniko-Teor. Izdat.: 1934) (in Russian).
  8. A. V. Deryagin and A. V. Andreev, J. Experimental and Theor. Phys., 71, No. 9: 1166 (1976) (in Russian).