Mechanical Spectroscopy Studies of Hydrogen Mobility in Titanium Doped Iron Alloy

S. M. Teus, V. G. Gavriljuk

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 02.07.2019. Download: PDF

Mobility of hydrogen atoms in the $\beta$-phase of titanium alloys doped with iron is studied by means of mechanical spectroscopy. As shown, the hydrogen dissolution in the $\beta$-phase results in appearance of the Snoek-like relaxation at temperatures about 80 K. The $ab initio$ atomic calculations are used to analyse atomic complexes responsible for the relaxation. The results suggest an affinity of hydrogen atom to iron in titanium and a responsible of $s$–H complexes ($s$—substitutional atom) with the symmetry lower than the cubic one for Snoek-like relaxation. The obtained activation energy of hydrogen migration in the $\beta$-phase assumes that such phase could serve as a pathway of hydrogen to the $\alpha$-phase where the hydride could form.

Key words: titanium, hydrogen, mechanical spectroscopy, first principles calculations, Snoek relaxation, hydrogen embrittlement.



PACS: 61.72.jj, 62.40.+i, 66.30.J-, 68.35.Dv, 71.15.-m, 81.40.Np

Citation: S. M. Teus and V. G. Gavriljuk, Mechanical Spectroscopy Studies of Hydrogen Mobility in Titanium Doped Iron Alloy, Metallofiz. Noveishie Tekhnol., 41, No. 10: 1291—1301 (2019)

  1. M. Ribeiro, M. Moreira, and J. Ferreira, J. Mater. Processing Technol., 143: 458 (2003). Crossref
  2. M. Rahman, Z. Wang, and Y. Wong, JSME International Journal Series C, 49: 11 (2006). Crossref
  3. P. Arrazola, A. Garay, L. M. Iriarte, M. Armendia, S. Marya, and F. Le Maitre, J. Mater. Process. Technol., 209: 2223 (2009). Crossref
  4. M. J. Donachie, Titanium: a Technical Guide (USA, ASM International: 2000).
  5. G. Lutjering and J. C. Williams, Titanium (Germany: Springer Verlag: 2007).
  6. C. Veiga, J. P. Davim, and A. J. R. Loureiro, Rev. Adv. Mater. Sci., 32: 133 (2012).
  7. D. Eliezer, E. Tal-Gutelmacher, C. E. Cross, and Th. Boellinghaus, Mater. Sci. Eng. A, 421 Nos. 1-2: 200 (2006). Crossref
  8. D. P. Williams and H. G. Nelson, Metal. Trans., 3, No. 8: 2107 (1972). Crossref
  9. D. A. Meyn, Metal. Trans., 3, No. 8: 2302 (1972). Crossref
  10. H. G. Nelson, Metal. Trans. A, 7, No. 5: 621 (1976). Crossref
  11. R. Dutton, K. Nuttall, M. P. Puls, and L. A. Simpson, Metal. Trans. A, 8, No. 10: 1553 (1977). Crossref
  12. L. A. Simpson and M. P. Puls, Metal. Trans. A, 10, No. 8: 1093 (1979). Crossref
  13. D. A. Hardwick and D. G. Ulmer, Hydrogen Effects in Metals (Eds. A. W. Thompson and N. R. Moody) (PA, Warrendale: TMS: 1996), p. 735.
  14. R. A. Oriani and P. H. Josephic, Acta Metal., 25, No. 9: 979 (1977). Crossref
  15. R. A. Oriani, Corrosion, 43, No. 7: 390 (1987). Crossref
  16. D. F. Teter, I. M. Robertson, and H. K. Birnbaum, Acta Mater., 49, No. 20: 4313 (2001). Crossref
  17. P. J. Ferreira, I. M. Robertson, and H. K. Birnbaum, Acta Mater., 46, No. 5: 1749 (1998). Crossref
  18. G. M. Bond, I. M. Robertson, and H. K. Birnbaum, Acta. Metall., 35, No 9: 2289 (1987). Crossref
  19. D. S. Shih, I. M. Robertson, and H. K. Birnbaum, Acta Metal., 36, No. 1: 111 (1988). Crossref
  20. H. K. Birnbaum and P. Sofronis, Mater. Sci. Eng. A., 176: 191 (1994). Crossref
  21. S. D. Pu and S. W. Ooi, Materials Science and Engineering: A, 761: 138059 (2019). Crossref
  22. G. A. Young and J. R. Scully, Corrosion, 50, No. 12: 919 (1994). Crossref
  23. V. G. Gavriljuk, B. D. Shanina, V. N. Syvanyuk, and S. M. Teus, J. Appl. Phys., 108: 083723 (2010). Crossref
  24. S. M. Teus, V. N. Shyvanyuk, B. D. Shanina, and V. G. Gavriljuk, phys. status solidi (a), 204: 4249 (2007). Crossref
  25. V. G. Gavriljuk, B. D. Shanina, V. N. Shyvanyuk, and S. M. Teus, Corros. Rev., 31: 33 (2013). Crossref
  26. S. M. Teus, D. G. Savvakin, O. M. Ivasishin, and V. G. Gavriljuk, Int. J. Hydr. Energy., 42: 2424 (2017). Crossref
  27. R. M. Gabidullin, B. A. Kolachev, and P. D. Drozdov, Problemy Prochnosti [Problems of Strength], 12: 36 (1971) (in Russian).
  28. P. Hohenberg and W. Kohn, Phys. Rev., 136: B864 (1964). Crossref
  29. W. Kohn and L. J. Sham, Phys. Rev., 140: A1133 (1965). Crossref
  30. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Austria, Wien: Techn. Universität Wien: 2001).
  31. J. P. Perdew, S. Burke, and M. Ernzernhoff, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  32. F. D. Murnaghan, Proc. Natl. Acad. Sci., 30, Iss. 9: 244 (1944). Crossref
  33. K. Kunc and R. M. Martin, Phys. Rev. Lett., 48: 406 (1982). Crossref
  34. M. T. Yin and M. L. Cohen, Phys. Rev. B, 26: 3259 (1982). Crossref
  35. A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (New York: Academic Press: 1972).
  36. Y. Fukai, The Metal-Hydrogen System (Springer Series in Materials Science, 2nd Ed.) (Berlin: Springer: 2005).