Microstructure and Mechanical Properties of a New Ti–1.5Al–1Fe–7.2Cr Alloy Produced with Conventional Cast and Wrought Approach

Pavlo E. Markovsky$^{1}$, Masahiko Ikeda$^{2}$, Masato Ueda$^{2}$, Vadim I. Bondarchuk$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka, 564-8680, Japan

Received: 02.06.2019. Download: PDF

The ability to obtain a new cost-efficient titanium $\beta$-metastable alloy Ti–1.5(%wt.)Al–1Fe–7.2Cr using conventional cast and wrought technological approaches is investigated. The microstructure and phase composition are characterized in the as-cast, hot-deformed and aged states. The aging behaviour of the state water-quenched from the temperature of single-phase $\beta$-field alloy is studied by exposure at 673 K and 773 K, and compared with previously obtained data for the Ti–11V–7Cr–4Al alloy. The mechanical properties are determined by tensile testing of the as-deformed, annealed at the temperature of the two-phase $\alpha$ + $\beta$-field, and strengthened by STA treatment (solid solution treatment, water quenching and aging) states. As confirmed, under all the test conditions proposed, the new alloy has an attractive balance of high strength and ductility, which are competitive with those for other titanium alloys of the same metastable $\beta$-type

Key words: cost efficient titanium alloy, thermomechanical processing, heat treatment, aging behaviour, microstructure, mechanical properties.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i10/1315.html

DOI: https://doi.org/10.15407/mfint.41.10.1315

PACS: 61.05.Cp, 64.70.Kd, 81.05.Bx, 81.20.Wk, 81.40.Ef

Citation: Pavlo E. Markovsky, Masahiko Ikeda, Masato Ueda, and Vadim I. Bondarchuk, Microstructure and Mechanical Properties of a New Ti–1.5Al–1Fe–7.2Cr Alloy Produced with Conventional Cast and Wrought Approach, Metallofiz. Noveishie Tekhnol., 41, No. 10: 1315—1329 (2019)

  1. U. Zwicker, Titan und Titanlegierungen (Berlin: Springer-Verlag: 1974). Crossref
  2. G. Lütjering and J. C. Williams, Titanium (Berlin: Springer: 2003). Crossref
  3. E. W. Collings, The Physical Metallurgy of Titanium Alloys (USA: Metals Park, OH: American Society for Metals: 1984). Crossref
  4. O. M. Ivasishin, and P. E. Markovsky, JOM, No. 7: 48 (1996). Crossref
  5. P. E. Markovsky, Metallofiz. Noveishie Tekhnol., 31, No. 4: 511 (2009).
  6. P. E. Markovsky and M. Ikeda, Materials Transactions, JIM, 46: 1515 (2005). Crossref
  7. D. Eylon, 3rd Japan International SAMPE Symposium (Tokyo: Society for the Advancement of Material and Process Engineering: 1993), p. 1588.
  8. M. Ikeda, S. Komatsu, K. Inoue, H. Shiota, and T. Imose, Mater. Sci. Technol., 16: 605 (2000). Crossref
  9. M. Ikeda, S. Komatsu, M, Ueda et al: Proc. Fourth Pacific Rim Int. Conf. on Advanced Materials and Processing (PRICM4) (Eds. S. Hanada, Z. Zhong, S. W. Nam, and R. N. Wright) (Sendai: Japan Institute of Metals: 2001), p. 213.
  10. P. E. Markovsky, M. Ikeda, D. G. Savvakin, and O. O. Stasyuk, Metallogr. Microstruct. Anal., 2: 184 (2018). Crossref
  11. O. M. Ivasishin, P. E. Markovsky, S. L. Semiatin, and C. H. Ward, Mater. Sci. Eng.: A, 405, Nos. 1-2: 296 (2005). Crossref
  12. D. Sugano and M. Ikeda, Mater. Sci. Eng. C, 25: 377 (2005). Crossref
  13. P. E. Markovs'kyi and M. Ikeda, Mater. Sci., 49: 85 (2013). Crossref
  14. M. Ikeda, M. Ueda, and Y. Takasaki, Mater. Res. Innovations, 17: S100 (2013). Crossref