Phase Transformations during Mechanical Alloying of Powders with Eutectic Composition of Al–Cu and Al–Cu/C Systems and Their Effect on the Structure and Mechanical Properties of the Composites

Ya. I. Matvienko$^{1}$, A. D. Rud$^{1}$, S. S. Polishchuk$^{1}$, N. D. Rud$^{1}$, S. A. Demchenkov$^{2}$, O. Yu. Klepko$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 02.08.2019. Download: PDF

The Al–33% wt. Cu and Al–33% wt. Cu/5% wt. C composites are prepared using mechanical alloying (MA) of elemental powders followed by cold and hot pressing. The features of phase transformations in the obtained in this way powder samples and composites are studied using X-ray diffraction analysis and scanning electron microscopy. The MA during 1–2 hours leads to an intensification of the reaction processes and dissolution of copper in aluminium with the formation of a supersaturated solid solution of Al (Cu) containing up to 4.9 at.% and 1.3 at.% copper in powders Al–33% wt. Cu and Al–33% wt. Cu/5% wt. C, respectively. Further MA results in formation of metastable b.c.c. Al$_4$Cu$_9$ and stable b.c.t. Al$_2$Cu phases. Thus, the phase composition of both powder mixtures after 8 hours of milling includes 3 crystalline phases: Al(Cu), Al$_4$Cu$_9$ and Al$_2$Cu. As also shown, the addition of 5% wt. of graphite during MA promotes both fracturing of metal powders and wrapping of graphite particles around them. The crystalline structure of the graphite is shown to transform into amorphous one during MA. Hot pressing leads to the decomposition of metastable Al$_4$Cu$_9$ in all composites, as well as the formation of Al$_4$C$_3$ carbide in Al–Cu/C composites. The effect both phase composition (the presence of metastable Al$_4$Cu$_9$ and stable Al$_2$Cu phases, as well as Al$_3$C$_4$ carbide) and microstructure modification of MAed powders on the mechanical properties of composites after cold and hot pressing is considered. Possible strengthening mechanisms of Al–Cu and Al–Cu/C composites are discussed.

Key words: Al–Cu/C, metal-matrix composites reinforced with graphite, mechanical alloying, powder metallurgy, cold and hot pressing.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i11/1519.html

DOI: https://doi.org/10.15407/mfint.41.11.1519

PACS: 61.05.cp, 62.25.-g, 64.60.My, 64.70.Kd, 81.20.Ev

Citation: Ya. I. Matvienko, A. D. Rud, S. S. Polishchuk, N. D. Rud, S. A. Demchenkov, and O. Yu. Klepko, Phase Transformations during Mechanical Alloying of Powders with Eutectic Composition of Al–Cu and Al–Cu/C Systems and Their Effect on the Structure and Mechanical Properties of the Composites, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1519—1538 (2019) (in Russian)


REFERENCES
  1. D. W. Wolla, M. J. Davidson, and A. K. Khanra, Mater. Design., 59: 151 (2014). Crossref
  2. Q. Kong, L. Lian, Y. Liu, and J. Zhang, Mater. Manuf. Processes, 29: 1232 (2014). Crossref
  3. M. Aravind, P. Yu, M. Yu. Yau, and D. H. L. Ng, Mater. Sci. Eng. A, 380: 384 (2004). Crossref
  4. K. Kim, D. Kim, K. Park, M. Cho, S. Cho, and H. Kwon, Materials, 12, Iss. 9: 1546 (2019). Crossref
  5. Ya. I. Matvienko, S. S. Polishchuk, A. D. Rud, T. M. Mika, V. I. Bondarchuk, and S. O. Demchenkov, Metallofiz. Noveishie Tekhnol., 41, No. 8: 981 (2019) (in Ukrainian). Crossref
  6. P. Wang, L. Deng, K. P. Prashanth, S. Pauly, J. Eckert, and S. Scudino, J. Alloys Compd., 735: 2263 (2018). Crossref
  7. R. Casati and M. Vedani, Metals, 4: 65 (2014). Crossref
  8. D. H. Nam, I. Ch. Seung, K. L. Byung, M. P. Hoon, S. H. Do, and H. H. Soon, Carbon, 50: 2417 (2012). Crossref
  9. J. L. Hernández, J. J. Cruz, C. Gómez, O. Coreño, and R. Martínez-Sanchez, Mater. Trans., 5: 1120 (2010). Crossref
  10. C. Suryanarayana, Prog. Mater. Sci., 1: 46 (2001). Crossref
  11. F. Li, K. N. Ishihara, and P. H. Singu, Metall. Trans. A, 22: 2849 (1991). Crossref
  12. M. B. Makhlouf, T. Bachaga, J. J. Sunol, M. Dammak, and M. Khitouni, Metals, 6: 145 (2016). Crossref
  13. A. Molina-Ocampo, R. A. Rodriguez-Diaz, A. Sedano, S. Serna et al., Digest J. Nanomaterials Biostructures, 11, No. 2: 3 (2016).
  14. T. Sanmugansudaram, M. Heilmaier, B. S. Murty, and V. S. Sarma, Metal. Mater. Trans. A, 40A: 2798 (2009). Crossref
  15. P. P. Chattopadhyay and E. I. Manna, Mater. Manufac. Processes, 17, Iss. 5: 583 (2007). Crossref
  16. R. Besson, M. Avettand-Fenoel, L. Thuinet, J. Kwon, A. Addad, P. Roussel, and A. Lergis, Acta Mater., 87, Iss. 1: 216 (2015). Crossref
  17. J. C. de Lima, D. M. Triches, V. H. F. dos Santos, and T. A. Grandi, J. Alloy Compd., 282: 258 (1999). Crossref
  18. R. Visnov, F. Ducastelle, and G. Treglia, J. Phys. F: Met. Phys., 12: 441e7 (1982). Crossref
  19. F. Rosa, J. R. Romero-Romero, J. L. López-Miranda, A. G. Hernández-Torres, and G. Rosas, Intermetallics, 61: 51 (2015). Crossref
  20. P. Yu. Butyagin and A. N. Streletskii, Phys. Solid State, 47, Iss. 5: 856 (2005). Crossref
  21. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska, Pure Appl. Chem., 57: 603 (1985).
  22. Determination of the Specific Surface Area of Solids by Gas Adsorption-BET Method (Second Edition of ISO 9277 ISO) (Geneva: 2010).
  23. L. G. Khvostantsev, L. F. Vereshchagin, and A. P. Novikov, High Temp.-High Pres., 9, Iss. 6: 637 (1977).
  24. G. K. Williamson and W. H. Hall, Acta Metal., 1: 22 (1953). Crossref
  25. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, Rentgenograficheskiy i Elektronno-Opticheskiy Analiz (Moscow: MISIS: 1994) (in Russian).
  26. M. Draissia and M.-Ya. Debili, Central European J. Phys., 3, Iss. 3: 395 (2005). Crossref
  27. J. Axon and W. Hume-Rothery, Proc. Roy. Soc. A, 193: 1 (1948). Crossref
  28. J. Zhao, Yu. Duan, X. Wang, and B. Wang, J. Phys. D: Appl. Phys., 46: 015304 (2013). Crossref
  29. W. Oliver and G. Pharr, J. Mater. Res., 7: Iss. 6: 1564 (1992). Crossref
  30. S. R. Ignatovich, I. M. Zakiev, and D. I. Borisov, Strength Mater., 38, Iss. 4: 428 (2006). Crossref
  31. Yu. V. Milman, J. Phys. D: Appl. Phys., 41: 074013 (2008). Crossref
  32. N. Larionova, R. Nikonova, and V. Ladyanov, Adv. Powder Technol., 29, Iss. 2: 399 (2018). Crossref
  33. W. Qin, Z. H. Chen, P. Y. Huang, and Y. H. Zhuang, J. Alloys Compd., 292, Iss. 1-2: 230 (1999). Crossref
  34. W. Qin, T. Nagase, Y. Umakosh, and J. A. Szpunar, Philos. Magazine Lett., 88: 169 (2008). Crossref
  35. L. F. Mondolfo and F. Lucio, Aluminum Alloys: Structure and Properties (London-Boston: Butterworth: 1976), p. 236. Crossref
  36. A. N. Streletskii, I. V. Kolbanev, A. B. Borunova, A. V. Leonov, and P. Yu. Butyagin, Colloid Journal, 66, Iss. 6: 729 (2014). Crossref
  37. S. Goana-Jimenez, R. A. Rodriguez-Diaz, A. Sedano, J. Porcayo-Calderon et al., Digest J. Nanomaterials Biostructures, 12, Iss. 2: 449 (2017).
  38. J. B. Fogagnolo, D. Amador, E. M. Ruiz-Navas, and J. M. Torralba, Mater. Sci. Eng. A, 433: 45 (2006). Crossref
  39. Ya. I. Matvienko, A. Rud, S. Polishchuk, Yu. Zagorodniy, N. Rud, and V. Trachevski, Applied Nanoscience, (2019). Crossref
  40. S. Tikhov, T. Minyukova, K. Valeev, S. Cherepanova, A. Salanov, V. Kaichev et al., RSC Advances, 7, Iss. 67: 42443 (2017). Crossref
  41. L. S. Gomez-Villalba, M. L. Delgado, and E. M. Ruiz-Navas, Mater. Chem. Phys., 132: 125 (2012). Crossref
  42. M. Draissia and M.-Ya. Debili, Central European J. Phys., 3, Iss. 3: 395 (2005). Crossref
  43. J. Fan and J. Njuguna, Light Weight Composite Structures in Transport, 3: 34 (2016). Crossref
  44. M. Braunovic, L. Rodrigue, and D. Gagnon, Proceedings of the 54th IEEE Holm Conference on Electrical Contacts (2008). Crossref
  45. G. Gubbels, M. Kouters, O. O'Halloran, and R. Rongen, 3rd Electronics System Integration Technology Conference ESTC (September 13-16, 2010, Berlin). Crossref
  46. C. S. Tiwary, D. R. Mahapatra, and K. Chattopadhyay, Appl. Phys. Lett., 101: 171901-171901-4 (2012). Crossref
  47. C. S. Tiwary, D. R. Mahapatra, and K. Chattopadhyay, Appl. Phys. Lett., 115: 203502 (2014). Crossref
  48. P. Matli, U. Fareeha, R. Shakoor, and A. Mohamed, J. Mater. Res. Technol., 7, No. 2: 165 (2018). Crossref
  49. K. Edalati, Z. Horita, and R. Z. Valiev, Sci. Rep., 8: 6740 (2018). Crossref
  50. B. Guo, B. Chen, X. Zhang et al., Carbon, 135: 224 (2018). Crossref
  51. L. Cui, R. Lu, and D. Ma, Materials, 11: 538 (2018). Crossref