Thick Epitaxial Films of Yttrium Iron Garnet Grown on Substrates with the Transitional Layer

S. I. Yushchuk

Lviv Polytechnic National University, 12 Bandera Str., UA-79013 Lviv, Ukraine

Received: 16.07.2019; final version - 08.10.2019. Download: PDF

To prevent mechanical stress in a film-substrate system, there is suggested to grow up thin layers of a non-magnetic garnet Gd$_3$Ga$_5$O$_{12}$ (Y:GGG) (0 $\leq$ х $\leq$ 0.2) on a gadolinium gallium garnet Gd$_{3-x}$Y$_x$Ga$_5$O$_{12}$ (GGG) ($a_s$ = 12.383 Å) substrate. These thin layers have a negative gradient of a crystal lattice parameter towards on yttrium iron garnet Y$_3$Fe$_5$O$_{12}$ (YIG) ($a_f$ = 12.376 Å) film, that is grown using liquid phase epitaxy method on the transitional layer. By regulating the technological conditions of growing (temperature and growth rate, solution-melt overcooling degree) the transitional layers Y:GGG in the thickness from 2.2 to 6.4 $\mu$m are received. Their crystal lattice parameter smoothly varies from a value of 12.3827 Å near the substrate with GGG to 12.3762–12.3789 Å on the surface of the layer. The YIG films grown up on the substrates with transitional layer have a thickness up to 130 $\mu$m, their ferromagnetic resonance line has a $\Delta H$ = (0.34–0.57) Oe width with a thickness $\leq$73 $\mu$m.

Key words: garnet ferrite films, liquid-phase epitaxy, ferromagnetic resonance.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i12/1667.html

DOI: https://doi.org/10.15407/mfint.41.12.1667

PACS: 61.66.Fn, 75.50.-y, 75.70.-i, 76.50.+g, 85.70.Ge

Citation: S. I. Yushchuk, Thick Epitaxial Films of Yttrium Iron Garnet Grown on Substrates with the Transitional Layer, Metallofiz. Noveishie Tekhnol., 41, No. 12: 1667—1675 (2019) (in Ukrainian)


REFERENCES
  1. S. I. Yushchuk, S. A. Yuryev, P. S. Kostyuk, and V. I. Bondar, Tekhnologiya i Konstruirovanie v Elektronnoj Apparature, No. 3 (57): 22 (2005) (in Russian).
  2. I. M. Syvorotka, S. B. Ubizskii, M. Kučera, M. Kuhn, and Z. Vertesy, J. Phys. D: Appl. Phys., 34: 1178 (2001). Crossref
  3. S. V. Dubinko, Uchyonye Zapiski Simferopolskogo Gosudarstvennogo Universiteta, No. 4 (43): 30 (1997) (in Russian).
  4. Eva Jakubisova-Liskova, Stefan Visnovsky, Houchen Chang, and Mingzhong Wu, NASA Astrophysics Data System, No. 5: 7 (2016).
  5. S. I. Yushchuk, S. O. Yuryev, O. B. Bilenka, and O. M. Gorina, Metallofiz. Noveishie Tekhnol., 40, No. 9: 1247 (2018) (in Ukrainian). Crossref
  6. A. Balbashov and A. Chervonenkis, Magnitnye Materialy dlya Mikroelektroniki [Magnetic Materials for Microelectronics] (Moscow: Energiya: 1979) (in Russian).
  7. V. I. Bondar, S. I. Yushchuk, S. O. Yuryev, P. I. Yurchishin, and I. P. Yaremiy, Fizyka i Khimiya Tverdogo Tila, 3, No. 2: 330 (2002) (in Ukrainian).
  8. S. A. Yuryev and S. I. Yushchuk, Pribory i Tekhnika Eksperimenta, No. 6: 101 (2013) (in Russian).
  9. S. I. Yushchuk, S. O. Yuryev, V. I. Bondar, V. I. Nikolaichuk, and S. B. Harambura, Visnyk Derzhavnoho Universytetu 'Lvivs'ka Politekhnika'. Ser. Elektronika, No. 513: 153 (2004) (in Ukrainian).
  10. S. I. Yushchuk, S. A. Yuryev, P. S. Kostyuk, and Nikolaichuk, Pribory i Tekhnika Eksperimenta, No. 5: 118 (2011) (in Russian).
  11. A. Eschenfelder, Fizika i Tekhnika Tsilindricheskikh Magnitnykh Domenov [Physics and Technology of Cylindrical Magnetic Domains] (Moscow: Mir: 1983) (in Russian).
  12. S. I. Yushchuk, S. O. Yuryev, and N. T. Pokladok, Ukr. Fiz. Zhurn., 64, No. 3: 242 (2019) (in Ukrainian). Crossref