Structure-Phase State and Wear of Ni–Cr–B–Si–C Coating on Steel 1045 under Friction Conditions with the Shear Load Component

B. N. Mordyuk$^{1}$, O. O. Mikosyanchik$^{2}$, R. G. Mnatsakanov$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Aviation University, 1 Cosmonaut Komarov Ave., UA-03058 Kyiv, Ukraine

Received: 16.09.2019; final version - 16.10.2019. Download: PDF

Structural-phase changes and wear of the gas-flame coating of Ni–Cr–B–Si–C system on steel 1045 are investigated experimentally under conditions of its intense deformation by the friction with a shear component of the load in the transmission oil. Using light microscopy, scanning electron microscopy, X-ray spectroscopy and X-ray structural-phase analysis, the morphology, microstructure, phase and chemical compositions of the Ni–Cr–B–Si–C coating are investigated before and after tribological tests. As found, under conditions of the applied normal (250 MPa) and shear ($P_{\textrm{SH}}$ = 30–50 MPa (20%)) stresses in the contact zone the Ni–Cr–B–Si–C coating exhibits a twice higher wear resistance as compared to the base material (steel 1045). The main factors for increasing the wear resistance and reducing the friction work of the coating Ni–Cr–B–Si–C is the presence of the uniformly dispersed particles of Ni and Cr borides, Cr carbides, and Ni silicides in the nanostructured Ni-based solid solution matrix. The increase in tribotechnical characteristics of the friction-strengthened layer of Ni–Cr–B–Si–C coating is also due to its saturation with the elements from medium and oil (carbon, phosphorus).

Key words: hardfacing protective coating, microstructure, carbides, borides, microhardness, wear, steel 1045.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i02/0175.html

DOI: https://doi.org/10.15407/mfint.42.02.0175

PACS: 61.72.Dd, 62.20.Qp, 68.35.-p, 81.15.Rs, 81.40.Pq, 81.65.Lp

Citation: B. N. Mordyuk, O. O. Mikosyanchik, and R. G. Mnatsakanov, Structure-Phase State and Wear of Ni–Cr–B–Si–C Coating on Steel 1045 under Friction Conditions with the Shear Load Component, Metallofiz. Noveishie Tekhnol., 42, No. 2: 175—195 (2020) (in Ukrainian)


REFERENCES
  1. D. A. Lesyk, S. Martinez, B. N. Mordyuk, V. V. Dzhemelinskyi, A. Lamikiz, and G. I. Prokopenko, Optics and Laser Technol., 111: 424 (2019). Crossref
  2. I. Hemmati, V. Ocelík, and J. Th. M. De Hosson, Phys. Procedia, 41: 302 (2013). Crossref
  3. I. Hemmati, R. M. Huizenga, V. Ocelík, and J. Th. M. De Hosson, Acta Mater., 61: 6061 (2013). Crossref
  4. I. Hemmati, J. C. Rao, V. Ocelík, and J. Th. M. De Hosson, Microsc. Microanal., 19: 120 (2013). Crossref
  5. B. N. Mordyuk, G. I. Prokopenko, P. Yu. Volosevych, L. E. Matokhnyuk, A. V. Byalonovich, and T. V. Popova, Mater. Sci. Eng. A, 659: 119 (2016). Crossref
  6. T. Liyanage, G. Fisher, and A. P. Gerlich, Surf. Coat. Technol., 205: 759 (2010). Crossref
  7. Gazotermicheskie Pokrytiya iz Poroshkovykh Materialov [Gas-Thermal Coatings Made of Powder Materials] (Eds. Yu. S. Borisov, Yu. A. Kharlamov, S. L. Sidorenko, and E. I. Ardatovskaya) (Kyiv: Naukova Dumka: 1987) (in Russian).
  8. Ye. A. Astakhov and V. V. Artemchuk, Skhidno-Yevropeys'kyy Zhurnal Peredovykh Tekhnol., 3, No. 5 (57): 4 (2012) (in Ukrainian).
  9. A. L. Ortiz, J.-W. Tian, L. L. Shaw, and P. K. Liaw, Scripta Mater., 62: 129 (2010). Crossref
  10. L. Zhou, G. Liu, X. L. Ma, and K. Lu, Acta Mater., 56: 78 (2008). Crossref
  11. B. N. Mordyuk and G. I. Prokopenko, Mater. Sci. Eng. A, 437: 396 (2006). Crossref
  12. B. N. Mordyuk and G. I. Prokopenko, Handbook of Mechanical Nanostructuring (Wiley-VCH: 2015), p. 417. Crossref
  13. H. Nykyforchyn, V. Kyryliv, and O. Maksymiv, Nanoscale Res. Lett., 12: 150 (2017). Crossref
  14. B. N. Mordyuk, G. I. Prokopenko, K. E. Grinkevych, N. A. Piskun, and T. V. Popova, Surf. Coat. Technol., 309: 969 (2017). Crossref
  15. B. N. Mordyuk, G. I. Prokopenko, Yu. V. Milman, M. O. Iefimov, K. E. Grinkevych, A. V. Sameljuk, and I. V. Tkachenko, Wear, 319: 84 (2014). Crossref
  16. C. R. Das, S. K. Albert, A. K. Bhaduri, C. Sudha, and A. L. E. Terrance, Surf. Eng., 21, No. 3: 290 (2005). Crossref
  17. O. O. Mikosyanchyk, Strukturno-Enerhetychni ta Reolohichni Pokaznyky mastyl'noho Sharu v Kontakti Tertya v Umovakh Nestalykh Rezhymiv Roboty [Structural, Energy and Rheological Indicators of Lubricant Layer in Friction Contact under Non-Stationary Friction Conditions] (Thesis of Disser. for Dr. Techn. Sci.) (Kyiv: National Aviation University: 2017) (in Ukrainian).
  18. B. M. Mordyuk and O. O. Mikosyanchyk, Metallofiz. Noveishie Tekhnol., 39, No. 6: 795 (2017) (in Ukrainian). Crossref
  19. O. Mikosyanchyk, R. Mnatsakanov, A. Zaporozhets, and R. Kostynik, Eastern-European J. Enterprise Technol., 4, No. 1 (82): 24 (2016). Crossref
  20. T. M. A. Al-Quraan, O. O. Mikosyanchyk, and R. G. Mnatsakanov, Mech. Eng. Res., 6, No. 2: 48 (2016). Crossref
  21. O. A. Mikosyanchik and R. G. Mnatsakanov, J. Frict. Wear, 38: 279 (2017). Crossref
  22. S. M. Hsu, M. C. Shen, E. E. Klaus, H. S. Cheng, and P. I. Lacey, Wear, 175: 209 (1994). Crossref
  23. B. E. Gurskii and A. V. Chichinadze, J. Frict. Wear, 28: 395 (2007). Crossref
  24. B. I. Kostetskiy, I. G. Nosovskiy, and A. K. Karaulov, Poverkhnostnaya Prochnost' Materialov pri Trenii [Surface Strength of Materials at Friction] (Kyiv: Tekhnika: 1976) (in Russian).
  25. S. A. Bespalov, Usp. Fiz. Met., 10, No. 4: 415 (2009) (in Russian). Crossref
  26. V. V. Tikhonovich, Metallofiz. Noveishie Tekhnol., 40, No. 8: 1005 (2018) (in Russian). Crossref
  27. D. A. Lesyk, S. Martinez, B. N. Mordyuk, V. V. Dzhemelinskyi, A. Lamikiz, G. I. Prokopenko, Yu. V. Milman, and K. E. Grinkevych, Surf. Coat. Technol., 328: 344 (2017). Crossref
  28. L. Zhou, G. Liu, Z. Han, and K. Lu, Scripta Mater., 58: 445 (2008). Crossref
  29. R. Sorokatyi, M. Chernets, A. Dykha, and O. Mikosyanchyk, Advances in Mechanism and Machine Science (Ed. T. Uhl) (Springer: 2019), p. 3761. Crossref
  30. Q. Li, D. Zhang, T. Lei, C. Chen, and W. Chen, Surf. Coat. Technol., 137: 122 (2001). Crossref
  31. Binary alloy Phase Diagrams (Ed. T. B. Massalski) (ASM International: 1990).
  32. P. Rogl, Phase Diagrams of Ternary Metal-Boron-Carbon Systems (Ed. G. Effenberg), (Novelty, OH: ASM International: 1998), p. 36.
  33. C. E. Campbell and U. R. Kattner, Calphad, 26: 477 (2002). Crossref
  34. I. A. Lyubinin, M. V. Kurbatova, K. E. Grinkevich, L. M. Kulikov, N. B. Kenig, L. G. Aksel'rud, and V. N. Davydov, Nanosistemi, Nanomateriali, Nanotehnologii, 7, No. 1: 271 (2009) (in Russian).
  35. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 103: 761 (2016). Crossref
  36. M. O. Vasyl'yev, B. M. Mordyuk, S. I. Sydorenko, S. M. Voloshko, and A. P. Burmak, Metallofiz. Noveishie Tekhnol., 37, No. 7: 1269 (2015) (in Ukrainian). Crossref
  37. H. Toda, K. Minami, K. Koyama, K. Ichitani, M. Kobayashi, K. Uesugi, and Y. Suzuki, Acta Mater., 57: 4391 (2009). Crossref
  38. A. I. Dekhtyar, B. N. Mordyuk, D. G. Savvakin, V. I. Bondarchuk, I. V. Moiseeva, and N. I. Khripta, Mater. Sci. Eng. A, 641: 348 (2015). Crossref