Analysis of the Relationship Between Local and General Mechanical Parameters Used to Describe the Behaviour of Polycrystalline Materials

V. Iu. Marina, V. I. Marina

Technical University of Moldova, 168 Shtefan cel Mare Blvd., MD-2004 Kishinev, Moldova

Received: 15.07.2019; final version - 24.10.2019. Download: PDF

The correlation of relationships among local and mechanical parameters obtained within the framework of self-consistent Kroners model and extreme of irrelevance of macroscopic measures with averaging of their microscopic analogues are developed. As shown, the macroscopic value of the shear modulus found on the basis of the Kroner model is always greater than the corresponding value calculated on the basis of the principle of extreme of measures’ inconsistency. Fundamental inequality is established between the anisotropy coefficient of crystals with a cubic lattice and the Poisson ratio of the corresponding polycrystalline material. The law of interaction between elements of the structure in an irreversible region obtained on the basis of the principle of inconsistency of measures under the assumption of homogeneous isotropic elasticity of material particles is investigated.

Key words: tensor of stress, tensor of strain, structure anisotropy, single crystal, polycrystal.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i03/0415.html

DOI: https://doi.org/10.15407/mfint.42.03.0415

PACS: 46.35.+z, 46.50.+a, 62.20.D-, 62.20.F-, 81.40.Jj, 81.40.Lm

Citation: V. Iu. Marina and V. I. Marina, Analysis of the Relationship Between Local and General Mechanical Parameters Used to Describe the Behaviour of Polycrystalline Materials, Metallofiz. Noveishie Tekhnol., 42, No. 3: 415—431 (2020) (in Russian)


REFERENCES
  1. R. Hill, Proc. Phys. Society, Section A, 65, Iss. 5: 349 (1952). Crossref
  2. E. Kroner, Int. J. Engng. Sci., 1: 261 (1963). Crossref
  3. M. Berveiller and A. Zaomi, J. Mechanics Phys. Solids, 26: 325 (1979). Crossref
  4. V. Marina, Mnogoelementnaya Model Sredy Opisivaiyuschaya Peremennye Slozhnye Neizotermicheskie Protsessy Nagruzheniya (Thesis of Disser. for Dr. Phys.-Math. Sci.) (Kyiv: Institute of Mechanics N.A.S.U.: 1991) (in Russian).
  5. V. Marina, Prikladnaya Mekhanika, No. 6: 9 (1997) (in Russian).
  6. V. Marina, Izvestiya AN Moldovy. Seriya Matematika, No. 2: 16 (1998) (in Russian).
  7. V. Iu. Marina and V. I. Marina, Metallofiz. Noveishie Tekhnol., 39, No. 3: 387 (2017) (in Russian). Crossref
  8. M. Onami, S. Ivasimidzu, K. Ganka, K. Siodzava, and K. Tanaka, Vvedenie v Micromekhaniku (Ed. M. Onami) (Moscow: Metallurgiya: 1987) (in Russian).
  9. T. D. Sherergor, Teoriya Uprugosti Microneodnorodnykh Sred (Moscow: Nauka: 1977) (in Russian).
  10. D. A. Gohfelid and O. S. Sadakov, Plastichnost i Polzuchest Elementov Konstruktsii pri Povtornykh Nagruzheniyakh (Moscow: Mashinostroienie: 1984) (in Russian).