Plasmon Spectroscopy of W (100) Single Crystal Surface

M. O. Vasylyev$^{1}$, E. G. Len$^{1,2}$, V. M. Kolesnik$^{1}$, I. M. Makeeva$^{1}$, V. I. Patoka$^{1}$, S. V. Smolnik$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Kyiv Academic University, N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 01.10.2019; final version - 15.01.2020. Download: PDF

Plasmon spectroscopy is used to study the electronic state near the W single crystal surface parallel to (100) crystallographic plane after various types of thermochemical and ion treatments. The study of the atomically pure faces of the metal single crystals under ultrahigh vacuum allows increasing the reliability of experimental data and comparing it with existing theoretical models developed for ideal crystals with the free surface. The average values of the surface ($E_s$) and bulk ($E_b$) plasmons’ energies, their ratio $E_{b}/E_{s}$, concentrations of conduction electrons corresponding to these plasmons, relative changes in interplanar spacing, and also the electrons work function from the W (100) surface are determined in the initial state and after consecutive heating in temperature range of 500–1600°C, holding in pure atomic oxygen and Ar$^{+}$ ion bombardment. A substantial dependence of experimental values of plasmon excitation energy on a state of the sample surface and degree of their vicinity to the values calculated using classical theory of collective electron-plasma oscillations in a solid during thermochemical and ion treatments of sample are explained. The minimal (4.07 eV) and maximal (4.37 eV) values of the work function of electrons from the W (100) surface, determined by the types of its treatment and important for practical applications in thermionic energy converters, are obtained.

Key words: surface of W (100) single crystal, conduction electrons, characteristic losses of electron energy, plasmons, electron work function.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i04/0471.html

DOI: https://doi.org/10.15407/mfint.42.04.0471

PACS: 68.49.Jk, 68.49.Sf, 71.45.Gm, 73.20.Mf, 79.20.Hx, 79.20.Uv

Citation: M. O. Vasylyev, E. G. Len, V. M. Kolesnik, I. M. Makeeva, V. I. Patoka, and S. V. Smolnik, Plasmon Spectroscopy of W (100) Single Crystal Surface, Metallofiz. Noveishie Tekhnol., 42, No. 4: 471—485 (2020) (in Russian)


REFERENCES
  1. B. P. Varaksin, A. S. Titkov, V. I. Silantev, and N. A. Shevchenko, Poverkhnost, No. 11: 125 (1991) (in Russian).
  2. Kamarul Aizat Abdul Khalid, Thye Jien Leong, and Khairudin Mohamed, IEEE Transactions on Electron Devices, 63, No. 6: 2231 (2016). Crossref
  3. Tugoplavkie Materialy v Mashinostroenii. Spravochnik [Refractory Materials in Mechanical Engineering. Handbook] (Moscow: Mashinostroenie: 1967) (in Russian).
  4. A. R. Shulman and S. A. Fridrihov, Vtorichno-Emissionnye Metody Issledovaniya Tverdogo Tela [Secondary Emission Methods for Solids Study] (Moscow: Nauka: 1977) (in Russian).
  5. M. A. Vasil'ev, Struktura i Dinamika Poverkhnosti Perekhodnykh Metallov [Transition Metals Structure and Surface Dynamics] (Kyiv: Naukova Dumka: 1988) (in Russian).
  6. V. T. Cherepin and M. A. Vasil'ev, Metody i Pribory dlya Analiza Poverkhnosti Materialov. Spravochnik [Methods and Instruments for Surface Analysis of Materials: Handbook] (Kyiv: Naukova Dumka: 1982) (in Russian).
  7. H. Raether, Excitation of Plasmons and Interband Transition by Electrons (Berlin: Springer Verlag: 1980).
  8. Y. Wu, G. Li, and J. P. Camden, Chem. Rev., 118, No. 6: 2994 (2018). Crossref
  9. E. A. Bakulin and M. M. Bredov, FTT, 12, No. 3: 891 (1977) (in Russian).
  10. M. A. Vasil'ev and S. D. Gorodetsky, Vacuum, 37: 723 (1987). Crossref
  11. V. A. Tinkov, M. A. Vasylyev, and G. G. Galstyan, Vacuum, 85: 677 (2011). Crossref
  12. V. E. Korsukov, A. S. Luk'yanenok, and V. N. Svetlov, Poverkhnost. Fizika, Khimiya, Mekhanika, No. 11: 28 (1983) (in Russian).
  13. J. A. Becker, E. J. Becker, and R. G. Brandes, J. Appl. Phys., 32, No. 3: 411 (1961). Crossref
  14. I. Ya. Dekhtyar, V. N. Kolesnik, V. I. Patoka, and V. I. Silantev, DAN USSR, Ser. A, No. 12: 1124 (1975) (in Russian).
  15. M. O. Vasylyev, V. M. Kolesnik, S. I. Sidorenko, S. M. Voloshko, V. V. Yanchuk, and A. K. Orlov, Metallofiz. Noveishie Tekhnol., 40, No. 7: 919 (2018) (in Ukrainian). Crossref
  16. V. O. Tin'kov, Uspekhi Fiziki Metallov, 7: 117 (2006) (in Russian). Crossref
  17. M. A. Vasylyev and V. A. Tinkov, Surf. Rev. Lett., 15: 635 (2008). Crossref
  18. D. Pines, Elementary Excitation in Solids (New York: Benjamin Press: 1963).
  19. J. L. Robins and J. B. Swan, Proc. Phys. Soc., 76: 857 (1960). Crossref
  20. E. F. Chaikovsky, V. S. Redkin, V. V. Zashkvara, and V. T. Sotnikov, FTT, 15, No. 6: 1947 (1973) (in Russian).
  21. David Edwards Jr. and F. M. Propst, J. Chem. Phys., 55, No. 11: 5175 (1971). Crossref
  22. V. V. Korablev, FTT, 12, No. 6: 1638 (1970) (in Russian).
  23. Y. N. Petrov, J. Electron Spectrosc. Rel. Phenom., 160: 35 (2007). Crossref
  24. I. Ya. Dekhtyar, V. I. Silantev, S. G. Sakharova, R. G. Fedchenko, V. I. Patoka, and V. N. Kolesnik, phys. status solidi (b), 74: 471 (1976). Crossref